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Introduction
The objective of dewatering is to lower the groundwater table to prevent significant groundwater flow into 
an excavation, and/or to ensure slope stability. The preferred dewatering system will depend on 
hydrogeological conditions and construction requirements. In the case of slopes and excavations, the 
groundwater table can be lowered using a combination of methods, such as deep wells, wellpoints, vacuum 
wells, and horizontal wells. Deep well systems are often used for dewatering slopes and excavations when 
large drawdowns are required. This type of system generally consists of an array of pumping wells located 
near the excavation or slope. The combined effect of the array lowers the groundwater table over a wide 
area. The active pumping system must be set below the groundwater table whereas the bottom of the wells 
must be set deep enough to allow flow without excessive head loss.  

The objective of this example is to illustrate how to model deep well systems in three-dimensional 
environments, and to verify the water-flow formulation against a well-known benchmark. To do so, the 
example will discuss a specific deep well system, and provide insight into an approach for modeling 
pumping wells.

Numerical Simulation 
The deep well system, taken from Mansur and Kaufman’s (1962) chapter on dewatering, consists of a large, 
770 foot-long by 370 foot-wide, 40 foot-deep excavation in a 90 foot-deep unconfined sandy aquifer. In 
order to capture the full effect of the river, the domain was extended 10,000 feet beyond the excavation in 
each direction. As shown in Figure 1, the centerline of the excavation is located 1000 feet from the edge of 
the river. The dewatering system consists of twelve pumping wells, located 5 feet from the crown of the 
excavation slope. The wells are provided with 40 feet of 10-inch diameter screens, and the pumping rate at 
each well is assumed equal to 1150 gpm (or 2.56 ft³/sec).
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Figure 1.  Problem configuration. 

The Saturated/Unsaturated Material Model was used to describe the sandy aquifer. Although optional in 
steady-state analyses, the volumetric water content function was used to estimate the hydraulic conductivity 
function. The volumetric water content function was taken as that of a typical sand with a porosity of 0.35 
and a soil-structure compressibility of 5 x 10-8 /psf. The saturated hydraulic conductivity was set equal to 
3.33 x 10-3 ft/s.

The river level was assumed to remain constant, at 85 feet of elevation, and a potential seepage face was 
assumed to prevail on the inner surfaces of the excavation. Although the pumping wells can be modeled as 
three-dimensional cylindrical objects, this can create numerical difficulties in large-scale problems. These 
difficulties can be alleviated by representing the wells as lines with prescribed water flux and surface 
perimeter. In this study, each pumping well was modeled as a line representing the effective screen length. 
The effective screen length accounts for head loss in the wells, and was determined by numerical 

experimentation. The water flux along the effective screen length was computed as  where 
𝑄𝑝𝑢𝑚𝑝𝑖𝑛𝑔 (𝑃𝐿𝑒)

 is the surface perimeter and  is the effective screen length. The downside to this approach is that large 𝑃 𝐿𝑒
hydraulic gradients may prevail near the lines where pumping occurs. This downside was remediated by 
constraining the mesh using meshed cylindrical bodies (or liners) along the screen length (refer to the insert 
in Figure 1). In this example, the finite element mesh was generated with 200 ft edge lengths in a tetrahedral 
pattern, which resulted in 127874 nodes and 678427 elements.

Results and Discussion 
Figure 2 shows the total head isosurfaces and phreatic surface from three different perspectives. As 
expected, the array of pumping wells prevents groundwater flow from entering the excavation, and results 
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in lowering of the total head and phreatic surface beneath the excavation. The total head is also found to be 
highest in the portion of the excavation closest to the river. Overall, the deep well system lowers the phreatic 
surface, and in so doing, provides additional stability to the side slopes and base of the excavation.

Figure 2.  Total head isosurfaces and phreatic surface. 

Figure 3 shows the total head beneath the center of the excavation, and reveals that it is essentially constant 
at 44.74 ft.
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Figure 3.  Total head beneath the center of the excavation.

Figure 4 shows the total head along the length of the different wells. As in reality, the pumping process 
results in nearly constant values of total head along the screened portion of the wells. For instance, the total 
head along the effective screen length of well number four remains approximately constant at 31.52 ft. The 
total head is also shown to be highest in the wells closest to the river, and symmetrical with respect to the 

axis perpendicular to the river. 

Figure 4.  Total head along the length of the wells.
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Adequacy of these results can be assessed by comparing them to those obtained using the method of images. 
As reported by Mansur and Kaufman (1962), the method of images results in values of total head of 44.5 
and 32 feet beneath the center of the excavation and at well number four, respectively. These results are in 
very good agreement with the model results. It must be noted that better agreement can be achieved by 
decreasing the element edge lengths. It must also be noted that failure to constrain the mesh using cylindrical 
bodies (or liners) leads to significant errors in the computed values of total head near the wells. This can 
rapidly be assessed by suppressing the geometry items and their extrusion from the design history.

Figure 5 shows a contour plot of drawdown in plan view. The result was achieved by unsuppressing the 
clipping planes, setting the Grid Cell Size equal to 10 ft, exporting the elevation of the phreatic surface at 
each grid point using the Export Isosurface functionality, and running the Python script provided in 
Appendix. Often preferred by hydrogeologists, the drawdown contour plot provides a fast and easy way of 

interpreting changes in total head.

Figure 5.  Drawdown contour plot in plan view.

Summary and Conclusions
The capabilities of the software were assessed with a benchmark problem for deep well systems in three-
dimensional environments. The results were shown to capture the general trend of the groundwater flow 
system, and to be in close agreement with those provided by the method of images. Though it was shown 
that pumping wells could be modeled as lines with prescribed water flux and surface perimeter, it was found 
that mesh constraints had to be applied around the screened portion of the wells for the sake of accuracy. 
The history-based approach of the software was also shown to provide a rapid means of assessing the effect 
of adding mesh constraints to the pumping wells. 
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Appendix
import csv
import numpy as np
import matplotlib.pyplot as plt

#---------------------------------------------------------------------------------------------------------
# Input
#---------------------------------------------------------------------------------------------------------

initialWaterTableElevation = 85
currentWaterTableElevation = 'surfaceElevation.csv'
xMin = -2500
xMax =  1000
dx   =  500
yMin =  0
yMax =  54
zMin = -500
zMax =  500
dz   =  100
colorMap = 'gist_rainbow'
viewDataPoints = 'NO'

#---------------------------------------------------------------------------------------------------------
# Data Manipulation                                                                                    
#---------------------------------------------------------------------------------------------------------

x  = []
y  = []
z  = []

with open(currentWaterTableElevation,'r') as csvfile:
        surface = csv.reader(csvfile, delimiter=',')
        for row in surface:
                x.append(float(row[0]))
                y.append(float(row[1]))
                z.append(float(row[2]))

dy = [initialWaterTableElevation - x for x in y]

#---------------------------------------------------------------------------------------------------------
# Contour Plot Generation                                                  
#---------------------------------------------------------------------------------------------------------

plt.figure(figsize = (6 * (xMax - xMin) / (zMax - zMin), 6), dpi = 80, facecolor = 'w')

plt.xlabel('x coordinate [ft]', labelpad = 10, fontsize = 12, fontweight = 'bold')
plt.ylabel('z coordinate [ft]', labelpad = 10, fontsize = 12, fontweight = 'bold')

plt.xlim(xMin, xMax)
plt.ylim(zMin, zMax)
plt.tick_params(axis = 'both', which = 'major', direction = 'in', pad = 10, labelsize = 12)
plt.xticks(np.arange(xMin, xMax + 1, step = dx))
plt.yticks(np.arange(zMin, zMax + 1, step = dz))

plt.tricontourf(x, z, dy, levels = np.arange(0, yMax + 1, 1), cmap = colorMap)
plt.colorbar(boundaries = (yMin, yMax + 1))

contourlines = plt.tricontour(x, z, dy, colors = 'Black', levels = np.arange(0, yMax + 1, 2))
plt.clabel(contourlines, fontsize = 10, fmt = '%1.0f')

if (viewDataPoints == 'YES'): plt.scatter(x, z, s = 1, c = 'Black')


