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Symbols 
𝜷 Compressibility, /kPa 

 of the soil structure 𝜷 
 of the solid soil particles 𝜷𝒔 

𝜷𝒘 Isothermal compressibility of water, 
4.8x10-10 /kPa at 10 ⁰C 

𝜸 Engineering shear strain 
 engineering shear strains 𝛾𝑥𝑦, 𝛾𝑦𝑧, 𝛾𝑧𝑥 

  
  

𝜹 Small increment 
𝜺 Strain 

 axial strain 𝜀𝑎 
 horizontal strain 𝜀ℎ 
 vertical strain 𝜀𝑣 
 volumetric strain 𝜀𝑝 

 deviatoric strain 𝜀𝑞 

 normal strains 𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑧𝑧 

 Cartesian shear strains 𝜀𝑥𝑦, 𝜀𝑦𝑧, 𝜀𝑧𝑥 

 principal strains 𝜀1, 𝜀2, 𝜀3 
 

𝜼 Stress ratio = 𝑞/𝑝′ 
𝜽 Volumetric content, m3/m3 

 water content, 𝜃𝑤 
 saturated water content, 𝜃𝑠𝑎𝑡 
 residual water content, 𝜃𝑟𝑒𝑠 
 air content, 𝜃𝑎 
 ice content, 𝜃𝑖𝑐𝑒  

𝜿 Slope of the unloading-reloading line in 
𝑉 − ln 𝑝′ plane 

𝝀 Slope of the normal compression line in 
𝑉 − ln 𝑝′ plane 

𝚲 Scalar multiplier 
𝝂′ Poisson’s ratio in terms of effective stress 
𝝆 Mass density, g/ m3 

 soil dry bulk density, 𝜌𝑑  
 of air, 𝜌𝑎 
 of water, 𝜌𝑤 
 of solids particles, 𝜌𝑠 
 of snow, 𝜌𝑠𝑛𝑜𝑤  
 of ice, 𝜌𝑖𝑐𝑒  

𝝈′ Effective stress, N/m2 

 axial effective stress 𝜎′
𝑎 

 horizontal effective stress 𝜎′
ℎ 

 vertical effective stress 𝜎′
𝑣 

 volumetric effective stress 𝜎′
𝑝 

 deviatoric effective stress 𝜎′
𝑞 

 normal effective stresses 𝜎′
𝑥𝑥, 𝜎′

𝑦𝑦, 𝜎′ 

 shear stresses 𝜎′
𝑥𝑦, 𝜎′

𝑦𝑧, 𝜎′
𝑧𝑥 

 principal effective stress 𝜎′
1, 𝜎′

2, 𝜎′
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𝝈 Total stress, N/m2 

𝝉 Shear stress, N/m2 

𝝓′ Effective angle of shear resistance 
𝝍 Angle of dilation 

  
  

𝒄′ Effective cohesion, N/m2 
𝑪𝒄 Compression index 
𝑪𝒔 Swelling index 
𝒆 Void ratio 
𝑬′ Effective stress elastic modulus  

𝑬′
𝒖𝒓
𝒓𝒆𝒇

 Reference unloading-reloading stiffness, 
N/m2 

𝑬′
𝒐𝒆𝒅
𝒓𝒆𝒇

 Reference tangent stiffness 

𝑮 Shear modulus 
𝑲′ Effective stress bulk modulus, N/m2 
𝑲 Hydraulic conductivity, m/s  

 of isothermal liquid water, 𝐾𝑤 
 of a fluid, 𝐾𝑓  

 of dry air, 𝐾𝑎  
 of an unfrozen soil, 𝐾𝑢 
 of a frozen soil, 𝐾𝑓  

 of a partially frozen soil, 𝐾𝑝𝑓 

 of a saturated soil, 𝐾𝑠𝑎𝑡 
 of a dry soil, 𝐾𝑑𝑟𝑦 

 of soil at a given water content, 𝐾′ 
 in the x direction, 𝐾𝑥  
 in the y direction, 𝐾𝑦 

𝑲𝒚
′ 𝑲𝒙

′⁄  Hydraulic conductivity anisotropy ratio 

𝑲𝟎 Earth pressure coefficient at rest 
𝑲𝒂 Earth pressure coefficient for the active 

condition 
𝑲𝒑 Earth pressure coefficient for the passive 

condition 
𝑲𝟎

𝒏𝒄 Earth pressure coefficeint for normally 
compressed soil 

𝑲𝟎
𝒐𝒄 Earth pressure coefficeint for 

overconsolidated soil 

𝑲(𝒎) Element characteristic matrix for FEM 

  
  

𝒎𝒗 coefficient of volume compressibility, 
m2/N 

𝑴 Slope of the critical state line the 𝑝′ − 𝑞 
stress plane 

𝑴(𝒎) FEM element mass matrix 

  
𝒑′ Mean effective stress, N/m2 

𝒑𝒓𝒆𝒇 Reference confining stress, N/m2 
𝒒 Deviator stress, N/m2 
𝒒 Volumetric flux, m3/s/m2 

 of air, 𝑞𝑎  
 of liquid water, 𝑞𝑤 
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𝑺 Degree of saturation 

  
𝒕 Time, s 

  

  

𝑼(𝒎) FEM matrix of nodal unknowns 

𝒖 Primary variable anywhere within a finite 
element 
 at nodal points, 𝑢𝑖  

𝒖𝒘 Pore-water pressure, N/m2 
𝑽 Specific volume 
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Preface 
GeoStudio is an integrated, multi-physics, multi-dimensional, platform of numerical analysis tools 

developed by GEOSLOPE International Ltd. for geo-engineers and earth scientists. The multi-disciplinary 

nature of GeoStudio is reflected in its range of products: four finite element flow products (heat and 

mass transfer); two finite element stress-strain products; and a slope stability product that employs limit 

equilibrium and stress-based strategies for calculating margins of safety. The focus of this book is on the 

stress-strain products.  

Countless textbooks provide a thorough treatment of the finite element method and its 

implementation, both in a general and subject-specific manner. Similarly, there are numerous 

comprehensive presentations of the mechanics of soils, both from a classical and critical state 

perspective. Journal articles and conference papers abound on specific aspects of soil stress-strain 

behaviour, formulation and implementation of constitutive models, and numerical strategies for coping 

with material non-linearity.  

It follows, then, that the idea of writing a book on static stress-strain finite element modelling with 

GeoStudio is not only daunting, but also rather presumptuous, given the breadth of material already 

available to the reader. Nonetheless, we feel that a review of the foundational principles associated with 

both the physics and the numerical approaches used by GeoStudio will have value to the reader and will 

assist in the effective use of the models.  

It is important to note that the purpose of this book is not to provide detailed instructions for operating 

the software. The primary vehicle for that information is the support section of the GEOSLOPE website 

(www.geoslope.com) where the user can access tutorial movies, example files, and the GeoStudio 

knowledge base. In addition, help topics are available during operation of the software in the Help menu 

(accessed by pressing F1). These resources provide valuable information for those learning how to use 

GeoStudio.  

The first two sections of this book include a general overview of GeoStudio and the finite element 

method as applied to static stress-strain problems. Sections 3 provides a summary of the underlying 

theory describing the stress-strain behavior of soils.  Section 4 then outlines the various types of 

analyses that can be undertaken using GeoStudio.  The formulations utilized within GeoStudio to 

describe specific material models is then summarized within Section 5.  Similarly, Section 6 summarizes 

the formulation used within GeoStudio to incorporate various forms of structural elements.  The final 

section provides a brief description of how boundary conditions applied to the finite model can be 

utilized to define external applied loading or deflections. A comprehensive reference list is provided to 

enable readers to develop a deeper understanding of a particular topics by exploring the archival 

literature. The appendices provide more detailed descriptions of several formulations described in a 

more general way within the body of the text.    

http://www.geoslope.com/
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1 GeoStudio Overview 
GeoStudio comprises several products (Table 1). The first four products listed in Table 1 simulate the 

flow of energy or mass while the following three products are used to simulate a wide range of soil 

mechanical behavior. BUILD3D is a feature-based model construction, visualization tool. Integration of 

many of the products within GeoStudio provides a single platform for analyzing a wide range of 

geotechnical and geoscience problems.  

Table 1. Summary of GeoStudio applications. 

Product Simulation Objective 

TEMP/W & TEMP3D Heat (thermal energy) transfer through porous media  

SEEP/W & SEEP3D Water (Liquid water and vapor) transfer through saturated and unsaturated 

porous media 

CTRAN/W &CTRAN3D Solute or gas transfer by advection and diffusion 

AIR/W &  AIR3D Air transfer in response to pressure gradients 

SIGMA/W Static stress-strain response and stability of geotechnical structures 

QUAKE/W Dynamic stress-strain response of geotechnical structures  

SLOPE/W Static or pseudo-dynamic slope stability using limit equilibrium or stress-based 

methods 

BUILD3D 3D model construction and visualization. 2D sections can be created for any of the 

2D solvers above. 

 

Many physical processes are coupled; that is, a change in the state variable governing one process alters 

the state variable governing another. For example, time-dependent deformation of a soil in response to 

an applied load represents a two-way, coupled process. During consolidation, the rate of water flow 

controls the dissipation of excess pore-water pressures and causes deformation, while the generation of 

excess pore-water pressures is linked to the resistance of the soil skeleton to deformation. Thus, the 

water transfer and equilibrium equations must be solved in a coupled manner using the SIGMA/W 

coupled consolidation formulation.  

Water and air flow through porous media provides another example of a coupled process.  The flow of 

water and air flow depend on their respective fluid pressures while the storage of water and air depend 

on the differential pressure between these two phases. A similar coupling occurs during the simulation 

of density dependent water flow.  The simulation of heat (TEMP/W) or mass transport (CTRAN/W) can 

utilize water flows generated in a seepage analysis (SEEP/W); however, the water flow, in turn, can be 
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affected by variations in water density created by the distribution of heat or mass within the domain. 

The same type of coupling also occurs in a density-dependent air flow analysis (i.e., AIR/W and 

TEMP/W). Table 2 summarizes some of the processes that can be coupled in GeoStudio. Additional 

coupling can also be simulated using the Add-in functionality within GeoStudio. One example of this 

includes the use of oxygen transport and consumption within a waste rock dump (CTRAN/W) to create 

heating (TEMP/W), which then results in air flow (AIR/W) that drives oxygen transport (CTRAN/W).   

A single GeoStudio Project file (*.GSZ) can contain multiple geometries and multiple analyses. Each 

analysis may contain a single set of physics (i.e., one product) or may integrate more than one set of 

physics (i.e., multiple products) with various levels of dependency (i.e., coupled or uncoupled analyses). 

For certain scenarios involving one-way coupling, it is often convenient to simulate the independent 

process in a separate analysis and direct the subsequent dependent analysis to the results from the 

independent analysis. For example, a CTRAN/W analysis could refer to water contents and water flow 

rates from an independent SEEP/W analysis. This simple method of product integration is the same 

functionality that allows a SLOPE/W or SIGMA/W analysis, for example, to obtain pore-water pressure 

information from a SEEP/W analysis. However, for two-way coupling, the coupled sets of physics must 

be contained within a single analysis. 

 
Table 2. Summary of the coupled formulations.  

Product Coupled Processes 

SEEP/W 

AIR/W 

Coupled water and air transfer for modelling the effect of air pressure changes on 

water transfer and vice versa 

SEEP/W 

TEMP/W 

Forced convection of heat with water and/or vapor transfer, free convection of liquid 

water caused by thermally-induced density variations, and thermally-driven vapor 

transfer  

AIR/W 

TEMP/W 

Forced convection of heat with air transfer and free convection of air caused by 

thermally-induced density variations 

CTRAN/W 

SEEP/W 

Advection of dissolved solutes with water transfer and free convection of liquid water 

caused by density variations due to dissolved solutes    

CTRAN/W 

AIR/W 

Advection of gaseous solutes with air transfer and free convection of air caused by 

density variations due to differential gas pressures    

SIGMA/W Coupled water transfer and stress-strain behavior to simulate the transient pore-water 

pressure and deformation response (i.e. consolidation) due to loading and/or unloading 

and/or changes in hydraulic conditions. 

 

The various analyses within a project file are organized in an Analysis Tree, as illustrated in many of the 
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example files. The Analysis Tree provides a visual structure of the analyses and identifies the ‘Parent-

Child’ relationships. For example, a CTRAN/W analysis might be the child of a SEEP/W analysis and, 

consequently, the integration and dependency relationships are visible in the parent-child Analysis Tree 

structure. The Analysis Tree also encourages the user to adopt a workflow pattern that is consistent with 

the modelling methodology advocated by GEOSLOPE International Ltd. (Appendix II ).  

The heat and mass transfer products support one-dimensional, two-dimensional, three-dimensional, 

plan view, and axisymmetric analysis. The formulation and finite element procedures are the same 

regardless of dimensionality. The selected dimensionality is incorporated during assembly of the 

element characteristic matrices and mass matrices (Appendix I.4). Assembly of these matrices involves 

numerical integration over the volume of the element, which requires the area and out-of-plane 

thickness for elements that are not three-dimensional. For a conventional two-dimensional analysis, the 

element thickness defaults to a unit length (1.0). The element thickness and width for a one-dimensional 

analysis are implicitly one unit length. A cylindrical coordinate system is adopted for axisymmetric 

analyses, with the conventional 𝑥 axis representing a radial dimension, 𝑟.  The thickness of the domain 

at any point in space is the arc length, which is calculated from the specified central angle and radius 𝑟. 

The element thickness for a plan view analysis is the vertical distance between the upper and lower 

surfaces. 
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2 Finite Element Approach to Stress-Strain Analyses 
In geotechnical engineering, there are fundamentally two design requirements that must be satisfied: 

the serviceability limit state (SLS) and the ultimate limit state (ULS). The primary focus of SLS is the levels 

of deformation (and accompanying stress) within the soil and any associated structures interacting with 

the soil. The primary focus of ULS is the overall stability of the system. A classic method such as limit 

equilibrium can address issues related to overall stability, but provides little insight into the actual 

stresses/strains within the system. In contrast, a rigorous numerical analysis of a soil-structure 

interaction problem can be used to address both the ULS (e.g. limiting stresses/strains at failure) and the 

SLS (e.g. stress/strains during safe operation) design requirements.  

The finite element method (FEM) is a numerical approach to solving partial differential equations (PDEs) 

that describe the distribution of a variable (e.g. strain or pressure) across space and/or time as a 

function of specified material properties. The PDE are generally derived from fundamental 

considerations of conservation of mass or energy applied to a representative elementary volume (REV) 

which represents a finite volume of the physical domain for which unique material properties can be 

described. Mathematical solutions to these PDEs can be found for relatively simple geometries and 

material properties by finding an analytical solution to the PDE from which the value of the variable can 

be calculated as a function of space and/or time, subject to specified boundary conditions.  

Analytical solutions are not obtainable for more complex domains (e.g. geometry) or material 

properties. In these cases a numerical solution is developed based on the principle of discretization in 

which the domain is subdivided into a number of ‘finite elements’ which have a defined geometry and 

material properties. The general ‘shape’ of the distribution of the dependent variable across these finite 

elements is prescribed and consequently the value of a dependent variable at the nodes can be used to 

represent the PDE description of the variable and the material properties across the element. This 

discretization enables the representation of the PDE in a semi-continuous way across the entire domain. 

The final result is a series of simultaneous equations of the value of a dependent variable or its 

derivative at each of the nodes. Boundary conditions (i.e. known values of the variable or its derivative) 

are used to constrain this set of simultaneous equations sufficiently to allow the equations to be solved 

using algebra. 

The key components of the FEM are:  

1. Discretization of the domain into finite elements; 

2. Selection of a function to describe how the primary variables vary within an element; 

3. Definition of the governing partial differential equation (PDE); 

4. Derivation of linear equations that satisfy the PDE within each element (element equations); 

5. Assembly of the element equations into a global set of equations, modified for boundary 

conditions; and, 

6. Solution of the global equations. 

Appendix I provides a detailed description of the FEM.  
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3 Theory 
This chapter introduces some basic theoretical considerations for the stress-strain analysis of 

geomaterials and/or structures. The equations governing a stress-strain analysis are those of a static 

equilibrium (Section 3.1). The additional requirement of compatibility (Section 3.1.2) introduces strain 

quantities, which are linked to stress increments through a constitutive relationship (3.1.3). Stress and 

strain invariants (Section 3.2) are commonly used in the formulation of constitutive relationships; 

accordingly, some common invariants are described before presenting the elastic and elastic-plastic 

constitutive relationships (Sections 3.3 and Section 3.4).  Section 3.5 recasts some of these relationships 

for geometric idealizations used in geotechnical analysis such as plane strain and axisymmetry.  

In GeoStudio, each material within a stress-strain analysis must be designated as having a pore-water 

pressure response type (Section 3.6). All of these response types can be used in a coupled stress-strain 

and water flow simulation (Section 3.7), however, at least one of the materials must be designated 

‘Consolidating’. Geomaterials often interact with structures, so a general overview of structural 

elements and the associated failure criteria is provided in Section 3.8. Section 3.9 briefly explains how 

the classical elastic-plastic formulation can be revised for completing a stress redistribution type of 

analysis. This generalized formulation is used to complete two types of analyses in SIGMA/W: 1) Stress 

Correction (Section 4.4.1); and, 2) Strength Reduction Stability (Section 4.4.2).  

3.1 General Requirements 
The displacement based finite element method satisfies the requirements of equilibrium and 

compatibility. The relation between equilibrium and compatibility is governed by a constitutive model.  

3.1.1 Equilibrium 

The state of stress at any point within the domain is defined by a second order tensor comprising nine 

components in Cartesian coordinates (Figure 1):  

[𝜎] = [

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

] ≡ [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] ≡ [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

] 
Equation 1 

where the first subscript indicates the direction of the normal to the surface and the second subscript 

indicates the direction of the stress. Symmetry in a three-dimensional stress field requires that 𝜎𝑥𝑦 =

 𝜎𝑦𝑥, 𝜎𝑦𝑧 = 𝜎𝑧𝑦, 𝜎𝑧𝑥 = 𝜎𝑥𝑧, which allows the stress state to be defined by a tensor with 6 unique 

components:  

{𝜎}𝑇 = {𝜎𝑥𝑥  𝜎𝑦𝑦  𝜎𝑧𝑧  𝜎𝑥𝑦  𝜎𝑦𝑧  𝜎𝑧𝑥} Equation 2 

Assuming the 𝑦 Cartesian coordinate aligned with the direction of gravity and a compression positive 

notation, equilibrium of the static control volume subject to the stress field must satisfy the following 

three equations:  
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(
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑦𝑥

𝜕𝑦
+

𝜕𝜎𝑧𝑥

𝜕𝑧
)𝑑𝑥𝑑𝑦𝑑𝑧 = 0 

 

(
𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
+

𝜕𝜎𝑧𝑦

𝜕𝑧
+ 𝜌𝑔)𝑑𝑥𝑑𝑦𝑑𝑧 = 0 

Equation 3 

(
𝜕𝜎𝑥𝑧

𝜕𝑥
+

𝜕𝜎𝑦𝑧

𝜕𝑦
+

𝜕𝜎𝑧𝑧

𝜕𝑧
)𝑑𝑥𝑑𝑦𝑑𝑧 = 0 

 

where the body (gravity) load 𝜌𝑔 acts only in the vertical coordinate direction and inertia effects have 

been neglected. Equation 3 is written in terms of total normal stresses and assuming that compressive 

normal stresses are positive.  

 

Figure 1. Components of the Cauchy stress tensor in Cartesian coordinates. The stress state depicted is for a compression 
positive notation.  

3.1.2 Compatibility 

A spatially continuous domain can be assumed to deform in a compatible manner. The deformations 𝑢, 

𝑣, and 𝑤 in the 𝑥, 𝑦 and 𝑧 directions, respectively, must therefore be defined by differentiable functions. 

The requirement for compatibility is expressed mathematically by the definition of the strain 

components. Assuming small strain theory and a compression positive sign convention, the strain field 

associated with the displacement field is defined with respect to the Cartesian coordinate system by a 

second order tensor comprising nine components:  

[𝜀] = [

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧

𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧
] =

[
 
 
 
 
 𝜀𝑥𝑥

1

2
𝛾𝑥𝑦

1

2
𝛾𝑥𝑧

1

2
𝛾𝑦𝑥 𝜀𝑦𝑦

1

2
𝛾𝑦𝑧

1

2
𝛾𝑧𝑥

1

2
𝛾𝑧𝑦 𝜀𝑧𝑧 ]

 
 
 
 
 

 

Equation 4 
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where the Cartesian shear strain components of the strain tensor were expressed using the engineering 

shear strain quantity 𝛾 because it causes shear stress. In small strain theory, 𝛾𝑖𝑗 = 𝛾𝑗𝑖  and the six 

engineering strain components comprise three normal strains and three shear strains that are defined 

as:  

𝜀𝑥𝑥 = −
𝜕𝑢

𝜕𝑥
    𝜀𝑦𝑦 = −

𝜕𝑣

𝜕𝑦
    𝜀𝑧𝑧 = −

𝜕𝑤

𝜕𝑧
 

Equation 5 

𝛾𝑥𝑦 = −𝜀𝑦𝑥 − 𝜀𝑥𝑦 = −
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 

Equation 6 

𝛾𝑦𝑧 = −𝜀𝑧𝑦 − 𝜀𝑦𝑧 = −
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
  

Equation 7 

𝛾𝑧𝑥 = −𝜀𝑧𝑥 − 𝜀𝑥𝑧 = −
𝜕𝑤

𝜕𝑥
−

𝜕𝑢

𝜕𝑧
 

Equation 8 

which can be compactly written as a vector of six unique strain components: 

{𝜀}𝑇 = {𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝛾𝑥𝑦
𝛾𝑦𝑧 𝛾𝑧𝑥} Equation 9 

3.1.3 Constitutive Relationship 

The 3 equilibrium and 6 compatibility equations (i.e. 9 equations in total) comprise 15 unknown 

quantities: 6 stresses, 6 strains, and 3 displacements. Six additional equations are required to obtain a 

mathematical solution. The link between the equilibrium and compatibility equations takes the form of 

a relation between infinitesimal increments (𝛿) of stress and strain, which is expressed by a constitutive 

law: 

{𝛿𝜎} = [𝐷]{𝛿𝜀} Equation 10 

where {𝛿𝜎} and {𝛿𝜀} are vectors comprising six stress and six strain increments, respectively: 

{𝛿𝜎}𝑇 = {𝛿𝜎𝑥𝑥 𝛿𝜎𝑦𝑦 𝛿𝜎𝑧𝑧 𝛿𝜎𝑥𝑦 𝛿𝜎𝑦𝑧 𝛿𝜎𝑧𝑥} Equation 11 

{𝛿𝜀}𝑇 = {𝛿𝜀𝑥𝑥 𝛿𝜀𝑦𝑦 𝛿𝜀𝑧𝑧 𝛿𝛾𝑥𝑦 𝛿𝛾𝑦𝑧 𝛿𝛾𝑧𝑥} Equation 12 

and [𝐷] is a constitutive matrix relating increments of stress and strain. The constitutive matrix [𝐷] can 

be expressed in terms of effective or total stress parameters. This being the case, all of the constitutive 

models in SIGMA/W are formulated in terms of effective stress parameters; consequently, additional 

theoretical considerations are required if an undrained response is to be simulated (Section 3.6.2). 

Alternatively, an undrained response can be simulated using an effective stress constitutive model via a 

coupled stress-strain and water transfer analysis (Section 3.7).  
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The relation between increments of stress and strain is normally nonlinear; consequently, the stiffness 

matrix [𝐷] is dependent on the current and past state of the material. The more complex constitutive 

models in Section 5 vary in both strength and stiffness with stress and strain levels.  

3.2 Invariants  
The formulation of stress-strain constitutive models, and sometimes the interpretation of numerical 

results, are often more conveniently accomplished by using invariants; that is, quantities with a 

magnitude independent of the chosen coordinate system. For example, the state of stress can be fully 

described using the six independent stress quantities corresponding to a fixed Cartesian coordinate 

system or three principal stresses and their corresponding normal unit vectors. Principal stresses are a 

convenient measure of the maximum and minimum normal stresses in the material. There are other 

invariants that are mathematically convenient and provide insight into the deformation response of a 

material. Specifically, these invariants indicate the amounts of volume and shear deformations, where 

the latter is particularly important given that changes in shape (i.e. shearing) can lead to failure.  

Cauchy's stress theorem can be used to determine a traction (i.e. stress) vector for a known stress state 

on a plane defined by a normal unit vector defined with respect to the Cartesian coordinate system 

(Figure 1). The normal and shear stress on the plane can subsequently be determined from the traction 

vector. For the special case where the traction comprises a normal stress but no shear stress, then 

Cauchy's stress theorem becomes a standard eigenvalue problem, from which the principal stresses 𝜎′
3, 

𝜎′
2, and 𝜎′

1 and the associated normal unit vectors can be determined. Assuming a compression 

positive sign convention, the principal stresses are always ordered as: 

𝜎′
1 ≥ 𝜎′

2 ≥ 𝜎′
3 Equation 13 

Consideration can be given to the amount of work input per unit volume of a material undergoing 

normal and shear strain increments (Equation 12). The work equation can be decomposed into 

increments of volumetric work and increments of distortional work, from which the corresponding 

stress and strain invariants can be derived (Wood, 1990). Two stress invariants that provide insight into 

the deformation response are the mean effective stress: 

𝑝′ =
𝜎′

𝑥𝑥 + 𝜎′
𝑦𝑦 + 𝜎′

𝑧𝑧

3
 

Equation 14 

and the deviatoric stress: 

𝑞 = [
(𝜎′

𝑦𝑦 − 𝜎′
𝑧𝑧)

2
+ (𝜎′

𝑧𝑧 − 𝜎′
𝑥𝑥)

2 + (𝜎′
𝑥𝑥 − 𝜎′

𝑦𝑦)
2

2
+ 3(𝜎𝑦𝑧

2 + 𝜎𝑧𝑥
2 + 𝜎𝑥𝑦

2 )]

1 2⁄

 

Equation 15 

The use of stress increments (e.g. 𝛿𝜎′
𝑥𝑥) in Equation 14 and Equation 15 instead of accumulated values 

results in corresponding increments of mean effective 𝛿𝑝′ and deviatoric stress 𝛿𝑞. The corresponding 

work-conjugate strain invariants are the volumetric strain increment: 

𝛿𝜀𝑝 = 𝛿𝜀𝑥𝑥 + 𝛿𝜀𝑦𝑦 + 𝛿𝜀𝑧𝑧 Equation 16 

and the deviatoric strain increment: 
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𝛿𝜀𝑞 =
1

3
{2 [(𝛿𝜀𝑦𝑦 − 𝛿𝜀𝑧𝑧)

2
+ (𝛿𝜀𝑧𝑧 − 𝛿𝜀𝑥𝑥)

2 + (𝛿𝜀𝑥𝑥 − 𝛿𝜀𝑦𝑦)
2
]

+ 3(𝛾𝑦𝑧
2 + 𝛾𝑧𝑥

2 + 𝛾𝑥𝑦
2 )}

1 2⁄
 

Equation 17 

where the subscripts 𝑝 and 𝑞 indicate pairing with a stress invariant (Section 3.3). The accumulated 

strain invariants are calculated as: 

𝜀𝑝 = ∑𝛿𝜀𝑝 
Equation 18 

𝜀𝑞 = ∑𝛿𝜀𝑞 
Equation 19 

The principal effective stresses can be calculated from the invariants as:  

{

𝜎′
1

𝜎′
2

𝜎′
3

} = 𝑝′ {
1
1
1
} +

2

3
𝑞

{
 
 

 
 sin (𝜃 +

2𝜋

3
)

sin𝜃

sin (𝜃 −
2𝜋

3
)
}
 
 

 
 

 

Equation 20 

where 𝜃 is another invariant referred to as Lode’s angle:  

𝜃 =
1

3
asin (

27

2

det 𝒔

𝑞3
) 

Equation 21 

where det 𝒔 is the determinant of the deviatoric stress tensor: 

det 𝒔 = |

𝜎𝑥𝑥 − 𝑝′ 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 − 𝑝′ 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧 − 𝑝′

| 

Equation 22 

The Lode angle is a measure of loading type and is bounded by: 

−
𝜋

6
≤ 𝜃 ≤

𝜋

6
 

Equation 23 

where the lower bound corresponds to a triaxial compression (𝜎′
1 ≥ 𝜎′

2 = 𝜎′
3) and the upper bound 

to triaxial extension (𝜎′
1 = 𝜎′

2 ≥ 𝜎′
3).  

The mean effective stress influences volume change as quantified by the volumetric strain increment. 

The deviatoric stress influences a change in shape as quantified by the deviatoric strain increment.  In 

principal stress space, a space diagonal, or hydrostatic axis, can be drawn where 𝜎′
1 = 𝜎′

2 = 𝜎′
3 

(Figure 2). A state of stress in principal space can be described by the distance along the space diagonal 

𝜉 = 𝑝′√3, the orthogonal distance from the diagonal 𝑠 = 𝑞 √2 √3⁄ , and the angle 𝜃 in the deviatoric 

plane that is the Lode angle (Figure 2).  
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Figure 2. Visualisation of a Cauchy stress tensor σ in the Haight-Westergaard stress space by JoKalliauer is in the Public 
Domain.  

3.3 Elastic Behaviour 
The simplest definition of [𝐷] required by Equation 10 is obtained by assuming isotropic linear elastic 

behaviour. Although this assumption is often not completely representative of real soil behaviour, the 

isotropic linear elastic constitutive model is fundamental to the formulation and implementation of all 

constitutive models. In addition, isotropic linear elasticity provides the basis for understanding stress-

strain behaviour and pore-water pressure response in undrained conditions (Section 3.6.2). The elastic 

stiffness matrix takes the following form (note: elements of the matrix that are not shown are zeros): 

[𝐷] =
𝐸′(1 − 𝜈′)

(1 + 𝜈′)(1 − 2𝜈′)

[
 
 
 
 
 
 
 
 
 
 
 
 
 1

𝜈′

1 − 𝜈′

𝜈′

1 − 𝜈′

𝜈′

1 − 𝜈′
1

𝜈′

1 − 𝜈′

𝜈′

1 − 𝜈′

𝜈′

1 − 𝜈′
1

1 − 2𝜈′

2(1 − 𝜈′)
1 − 2𝜈′

2(1 − 𝜈′)

1 − 2𝜈′

2(1 − 𝜈′)]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Equation 24 

where 𝐸′ is the effective elastic modulus and 𝜈′ effective Poisson’s ratio.  

https://en.wikipedia.org/wiki/Stress_space
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The stiffness form of the elastic stress-strain law (Equation 10 with Equation 24) can be inverted to 

obtain the compliance form of the relation: 

{
  
 

  
 
𝛿𝜀𝑥𝑥

𝛿𝜀𝑦𝑦

𝛿𝜀𝑧𝑧
𝛿𝛾𝑥𝑦

𝛿𝛾𝑦𝑧

𝛿𝛾𝑧𝑥}
  
 

  
 

=
1

𝐸′

[
 
 
 
 
 

1 −𝜈′ −𝜈′

−𝜈′ 1 −𝜈′

−𝜈′ −𝜈′ 1
2(1 + 𝜈′)

2(1 + 𝜈′)

2(1 + 𝜈′)]
 
 
 
 
 

{
  
 

  
 
𝛿𝜎′

𝑥𝑥

𝛿𝜎′
𝑦𝑦

𝛿𝜎′
𝑧𝑧

𝛿𝜎′
𝑥𝑦

𝛿𝜎′
𝑦𝑧

𝛿𝜎′
𝑧𝑥}

  
 

  
 

 

Equation 25 

where the property by which shear stress is calculated from strain increments is recognizable as the 

shear modulus: 

𝐺 =
𝐸′

2(1 + 𝜈′)
 

Equation 26 

Substitution of the normal strain increments from Equation 25 into Equation 16 and subsequent 

regrouping of the stress increments to obtain Equation 14 gives:  

𝛿𝜀𝑝
𝑒 =

𝛿𝑝′

𝐾′
 

Equation 27 

where the superscript 𝑒 indicates elastic and 𝐾′ is the effective bulk modulus given by: 

𝐾′ =
𝐸′

3(1 − 2𝜈′)
 

Equation 28 

Similarly, substitution of the strain increments from Equation 25 into Equation 17 and subsequent 

regrouping of the stress increments to obtain Equation 15 gives:  

𝛿𝜀𝑞
𝑒 =

𝛿𝑞

3𝐺
 

Equation 29 

Having defined the shear modulus and bulk modulus, the stiffness matrix (Equation 24) can also be cast 

in a form that is convenient for the implementation of some constitutive models (Section 5.7): 

[𝐷] =

[
 
 
 
 
 
 𝐾

′ + 4
3⁄ 𝐺′ 𝐾′ − 2

3⁄ 𝐺′ 𝐾′ − 2
3⁄ 𝐺′

𝐾′ − 2
3⁄ 𝐺′ 𝐾′ + 4

3⁄ 𝐺′ 𝐾′ − 2
3⁄ 𝐺′

𝐾′ − 2
3⁄ 𝐺′ 𝐾′ − 2

3⁄ 𝐺′ 𝐾′ + 4
3⁄ 𝐺′

𝐺
𝐺

𝐺 ]
 
 
 
 
 
 

 

Equation 30 
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3.4 Elastic-Plastic Behaviour 
An elastic-plastic framework can be used to formulate constitutive models that describe various aspects 

of the stress-strain behaviour of soils. The formulation of elastic-plastic constitutive models is 

summarized herein to facilitate subsequent discussions. A full discourse on elastic-plastic behaviour and 

the formulation of constitutive models is given by Potts and Zdravković (1990). The key elements of an 

elastic-plastic constitutive model are (Wood, 1990) the following: 

1. Elastic model – a constitutive model that links elastic, recoverable, deformations (strains) with 

changes in effective stresses.  

2. Yield surface – a function that describes a boundary in general stress space within which the 

deformations are elastic.  

3. Plastic potential – a function that describes the relative magnitudes of the plastic strains;  

4. Hardening/softening law – a relationship that links the changing size of the yield surface with 

the absolute magnitude of plastic strains.  

It is also worthwhile to note the following:  

• The elastic properties can be linear or nonlinear.  

• The failure law (e.g. Mohr-Coulomb failure law) is often implicit in the yield function. 

• The failure law describes a surface in effective stress space outside of which the stress state 

cannot exist (Wood, 1990). 

• Elastic-plastic constitutive models manifest one or more types of plastic behaviour: perfect 

plasticity, strain hardening plasticity, and strain softening plasticity.  

Elastic-plastic constitutive models recast the constitutive law (Equation 10) as: 

{𝛿𝜎′} = [𝐷𝑒𝑝]{𝛿𝜀} Equation 31 

where [𝐷𝑒𝑝] is used to indicate that the constitutive matrix is elastic-plastic instead of purely elastic. The 

total strain increments are decomposed into elastic and plastic parts: 

{𝛿𝜀} = {𝛿𝜀𝑒} + {𝛿𝜀𝑝} Equation 32 

where the superscripts 𝑒 and 𝑝 indicate elastic and plastic, respectively. The incremental stresses are 

related to the incremental elastic strains by  

{𝛿𝜎′} = [𝐷]{𝛿𝜀𝑒} Equation 33 

The matrix [𝐷] has been retained to represent the elastic constitutive matrix, which could be linear 

elastic (Equation 25) or non-linear. Combining Equation 32 and Equation 33 gives: 

{𝛿𝜎′} = [𝐷]({𝛿𝜀} − {𝛿𝜀𝑝}) Equation 34 

Plastic, irrecoverable strains, are calculated by means of a flow rule, which can be expressed as: 
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{𝛿𝜀𝑝} = Λ{
𝜕𝑃({𝜎′}, {𝑚})

𝜕𝜎′ } 
Equation 35 

where Λ is a scalar multiplier and 𝑃({𝛿𝜎′}, {𝑚}) is the plastic potential function of the form: 

𝑃({𝜎′}, {𝑚}) = 0 Equation 36 

where {𝑚} is a vector of state parameters that are immaterial because only the differentials of 𝑃 with 

respect to the stress components are needed in Equation 35. The differentials of 𝑃 with respect to the 

stress components define the relative magnitudes of the plastic strains. Substitution of Equation 35 into 

Equation 34 gives: 

{𝛿𝜎′} = [𝐷]{𝛿𝜀} − Λ[𝐷] {
𝑃({𝜎′}, {𝑚})

𝜕𝜎′ } 
Equation 37 

A yield function is a scalar function that can be expressed in terms of either principal stresses, or stress 

invariants, and state parameters. The yield function must evaluate to zero when plastic strains are 

developing: 

𝐹({𝜎′}, {𝑘}) = 0 Equation 38 

where {𝑘} is a vector of state parameters.  

The stress state must also remain on the yield function when plastic strains are occurring, which 

requires: 

𝛿𝐹({𝜎′}, {𝑘}) = {
𝜕𝐹({𝜎′}, {𝑘})

𝜕𝜎′ } {𝛿𝜎′} + {
𝜕𝐹({𝜎′}, {𝑘})

𝜕𝑘
} {𝛿𝑘} = 0 

Equation 39 

 

Equation 39 is referred to as the consistency condition. Equation 39 can be rearranged to give {𝛿𝜎′}, 

which can in turn be set equal to Equation 37 to obtain Λ, which can subsequently be substituted into 

Equation 37 to determine the elastic-plastic constitutive matrix as:  

[𝐷𝑒𝑝] = [𝐷] −
[𝐷] {

𝜕𝑃({𝜎′}, {𝑚})
𝜕𝜎′ } {

𝜕𝐹({𝜎′}, {𝑘})
𝜕𝜎′ }

𝑇

[𝐷]

{
𝜕𝐹({𝜎′}, {𝑘})

𝜕𝜎′ }
𝑇

[𝐷] {
𝜕𝑃({𝜎′}, {𝑚})

𝜕𝜎′ } + 𝐴

 

Equation 40 

where 𝐴 is given by 

𝐴 = −
1

Λ
{
𝜕𝐹({𝜎′}, {𝑘})

𝜕𝑘
}

𝑇

{𝛿𝑘} 
Equation 41 

The parameter 𝐴 has a form that is dependent on the type of plasticity: perfect plasticity, strain 

hardening/softening plasticity, or work hardening/softening plasticity.  
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3.5 Geometric Idealizations 
In a 2D plane strain idealization of a stress-strain problem, the out-of-plane displacement is null (i.e. 

𝑤 = 0) and the strain increments are defined as:  

𝛿𝜀𝑥𝑥 = −
𝜕𝑢

𝜕𝑥
  𝛿𝜀𝑦𝑦 = −

𝜕𝑣

𝜕𝑦
  𝛿𝜀𝑧𝑧 = 0 

Equation 42 

𝛿𝛾𝑥𝑦 = −
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
  𝛿𝛾𝑦𝑧 = 0  𝛿𝛾𝑧𝑥 = 0 

 

There are four corresponding non-zero stress increments given by:  

{𝛿𝜎}𝑇 = {𝛿𝜎𝑥𝑥 𝛿𝜎𝑦𝑦 𝛿𝜎𝑧𝑧 𝛿𝜎𝑥𝑦} Equation 43 

 

In a 2D axisymmetric idealization of a stress-strain problem the domain has symmetry about a central, 

rotational axis and the subsequent coordinate system is cylindrical, with the x coordinate representing 

the radial coordinate 𝑟, and the out-of-plane z coordinate representing the arc length for an assumed 

(i.e. specified) interior angle 𝜃. As with the 2D plane strain idealization, there is no displacement in the 

out-of-plane direction. The strain increments are defined as: 

𝛿𝜀𝑟 = −
𝜕𝑢

𝜕𝑟
  𝛿𝜀𝑦𝑦 = −

𝜕𝑣

𝜕𝑦
  𝛿𝜀𝜃 = −

𝑢

𝑟
 

Equation 44 

𝛿𝛾𝑟𝑦 = −
𝜕𝑣

𝜕𝑟
−

𝜕𝑢

𝜕𝑦
  𝛿𝛾𝑦𝜃 = 𝛿𝛾𝑟𝜃 = 0 

 

There are four corresponding non-zero stress increments given by:  

{𝛿𝜎}𝑇 = {𝛿𝜎𝑟 𝛿𝜎𝑦𝑦 𝛿𝜎𝜃 𝛿𝜎𝑟𝑦} Equation 45 

 

A particular example of an axisymmetric stress-strain problem is that of a conventional triaxial 

compression test. The generalized invariants described in Section 3.2 can be simplified for the 

axisymmetric condition of conventional triaxial compression as: 

𝑝′ =
𝜎′

𝑎 + 2𝜎′
𝑟

3
 

Equation 46 

𝑞 = 𝜎′
𝑎 − 𝜎′

𝑟 Equation 47 

𝛿𝜀𝑝 = 𝛿𝜀𝑎 + 2𝛿𝜀𝑟 Equation 48 

𝛿𝜀𝑞 =
2(𝛿𝜀𝑎 − 𝛿𝜀𝑟)

3
 

Equation 49 

where the axial stress 𝜎′
𝑎 = 𝜎′

𝑦𝑦. 
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3.6 Pore-water Pressure Response 
Material models used in a Load-Deformation analysis must be assigned a pore-water pressure response 

type. The selection of the response type governs the nature of the constitutive matrix [𝐷] used to 

assemble the finite element equations and the calculation of changes in pore-water pressure. SIGMA/W 

supports two response types including Drained (3.6.1) and Undrained (Section 3.6.2). The following 

sections discuss the theoretical implications of each type.  

3.6.1 Drained Response 

The constitutive matrix [𝐷] required by Equation 10 can be expressed in terms of effective stress 

parameters to simulate a drained response to loading. All constitutive models in SIGMA/W are 

formulated in terms of effective stress stiffness parameters. The principle of effective stress requires 

that the total stresses be equivalent to the summation of the effective stresses and pore-water 

pressures. The principle of effective stress applies also to stress increments:  

{𝛿𝜎} = {𝛿𝜎′} + {𝛿𝜎𝑤} Equation 50 

where the prime denotes effective stress and the vector of changes in pore-water pressure (𝛿𝜎𝑤) is 

given by: 

{𝛿𝜎𝑤}𝑇 = {𝛿𝑢𝑤 𝛿𝑢𝑤  𝛿𝑢𝑤  0 0 0} Equation 51 

where 𝑢𝑤 is pore-water pressure. Solving Equation 50 for the effective stress increments gives:  

{𝛿𝜎′} = [𝐷′]{𝛿𝜀} = {𝛿𝜎} − {𝛿𝜎𝑤} Equation 52 

which reveals that materials with a drained response type respond instantaneously to changes in pore-

water pressure (Section 7.4). 

3.6.2 Undrained Response 

An undrained response to loading can be simulated without resorting to a coupled stress-strain and 

water transfer formulation (Section 3.7) if the material response type is set to undrained. The material is 

still considered to be responding to changes in effective stress (Equation 50); however, unlike the 

presumption of fully drained conditions (e.g. Section 3.6.1), the changes in pore-water pressure (𝛿𝑢𝑤) 

are non-zero as both the solid and fluid phases undergo deformation in response to the applied load 

(Naylor, 1974). The strains in each phase must be the same in a macroscopic sense. As such, the stress 

changes in both the solid and fluid phases are related to the incremental strain components by: 

{𝛿𝜎′} = [𝐷′]{𝛿𝜀} Equation 53 

 

and 

{𝛿𝜎𝑓} = [𝐷𝑓]{𝛿𝜀} Equation 54 
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where [𝐷′] and [𝐷𝑓] are the effective stress stiffness and the bulk pore fluid stiffness matrices, 

respectively. Substitution of Equation 53 and Equation 54 into Equation 50 gives:  

[𝐷] = [𝐷′] + [𝐷𝑓] Equation 55 

Equation 55, which is required in the equilibrium equations (i.e. Equation 3 via Equation 10), makes it 

possible to complete an undrained analysis using an effective stress constitutive model. The pore-fluid 

stiffness matrix is given by: 

[𝐷𝑓] = 𝐾𝑒 [
13 03

03 03
] 

Equation 56 

where 𝐾𝑒 is the equivalent bulk modulus of the pore-fluid, 13 and 03 are 3 x 3 matrices of ones and 

zero, respectively. Naylor (1974) demonstrated that the equivalent bulk modulus of the pore fluid, 𝐾𝑒, is 

related to the bulk modulus of the pore-fluid 𝐾𝑓. The formulation of Naylor (1974) can be expanded for 

partial saturation by considering the water-air mixture as a single phase. The isothermal compressibility 

of fluid is defined as the volume change of a fixed mass with respect to a pressure change per unit 

volume at constant temperature. The compressibility of an air-water mixture can be derived using the 

direct proportion of the compressibility of each fluid (Fredlund and Rahardjo, 1993). Ignoring the effects 

of matric suction and assuming the percentage of dissolved air negligible, the compressibility of the pore 

fluid is given by:  

𝛽𝑓 =
1

𝑉𝑓

𝛿𝑉𝑓

𝛿𝑢𝑓
= 𝑆𝛽𝑤 + (1 − 𝑆)𝛽𝑎𝑖𝑟 

Equation 57 

 

where the isothermal compressibility of air (𝛽𝑎𝑖𝑟) is equal to the inverse of the of the absolute air 

pressure (e.g. ~1/101.325 m2/kN), 𝛽𝑤 is the isothermal compressibility of water (~4.8E-10 m2/N at 

10°C), and 𝑆 is the degree of saturation. Recall that compressibility is the inverse of the bulk modulus.  

In the undrained compression of an element of soil, the strains in each phase are the same at the 

macroscopic level, and if the solid and fluid phases deform together, the relative movement between 

the two phases is negligible. An increment in the pore-fluid pressure causes expansion or contraction of 

both the pore-fluid and the solid soil particles. The pore-fluid occupies a dimensionless volume equal to 

the porosity (𝑛) and the soil solid particles volume (1 − 𝑛). The total volume change per unit volume of 

soil, 𝛿𝜀𝑝, is equal to the summation of the volume change of the pore-fluid and solid particles: 

𝛿𝜀𝑝 = 𝑛𝛽𝑓𝛿𝑢𝑓 + (1 − 𝑛)𝛽𝑠𝛿𝑢𝑓 Equation 58 

 

where 𝛽𝑠 is the compressibility of the solid soil particles. Substitution of Equation 56 into Equation 54 

gives three identical equations that take the form: 

𝛿𝑢𝑓 = 𝐾𝑒(𝛿𝜀𝑥 + 𝛿𝜀𝑦 + 𝛿𝜀𝑧) = 𝐾𝑒(𝛿𝜀𝑝) Equation 59 
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Solving Equation 59 for the volumetric strain increment and setting it equal to Equation 58 gives: 

𝐾𝑒 =
1

𝑛𝛽𝑓 + (1 − 𝑛)𝛽𝑠
 

Equation 60 

 

Equation 60 can be simplified by assuming the bulk modulus of the solid particles is much greater than 

that of the soil structure and the pore-fluid. Using this assumption along with substitution of Equation 

57 gives: 

𝐾𝑒 =
1

𝑛(𝑆𝛽𝑤 + (1 − 𝑆)𝛽𝑎𝑖𝑟)
=

1

𝜃𝑤𝛽𝑤 + 𝜃𝑎𝑖𝑟𝛽𝑎𝑖𝑟
 

Equation 61 

 

where 𝜃𝑤 is the volumetric water content and 𝜃𝑎𝑖𝑟 is the volumetric air content. The value of 1/𝐾𝑒 

varies between 𝛽𝑤 and 𝛽𝑎𝑖𝑟 in a mixture of air and water (Figure 3). The maximum and minimum bulk 

fluid compressibility decrease when the air-water mixture exists within soil (Figure 3).  

 

Figure 3. Bulk compressibility (left) and equivalent bulk modulus of an air-water mixture and an air-water mixture in a 
porous medium with a porosity of 0.35.  

In summary, an undrained pore-water pressure increment can be computed by Equation 59 from the 

strain increments obtained from a finite element analysis in which the stiffness matrices are assembled 

using a total stress stiffness matrix ([𝐷] = [𝐷′] + [𝐷𝑓]). The effective stress stiffness matrix [𝐷′] is 

obtained from the constitutive model (Section 5) while the stiffness matrix [𝐷𝑓] is calculated internally. 

For a saturated, isotropic, linear elastic material, the total stress stiffness matrix [𝐷] from Equation 55 

can be shown to correspond to an equivalent undrained total stress elastic modulus 𝐸 and Poisson’s 

ratio 𝜈 (Section 3.6.2.1). 
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3.6.2.1 Pore-water Pressure Coefficients 

The undrained response of porous media is often interpreted in the context of a pore-water pressure 

parameter. A rigorous Bishop pore-water pressure coefficient for both the saturated or unsaturated 

conditions is obtained by substitution of Equation 61 into Equation 59:  

(𝜃𝑤𝛽𝑤 + 𝜃𝑎𝑖𝑟𝛽𝑎𝑖𝑟)𝛿𝑢𝑓 = 𝛿𝜀𝑝 Equation 62 

 

The volumetric strain of an undrained control volume can also be calculated from the change in mean 

total stress 𝛿𝑝 as:  

𝛿𝜀𝑝 = 𝛽𝑢𝛿𝑝 Equation 63 

where 𝛽𝑢 is the undrained compressibility that embodies the compressibility of the soil structure and 

pore fluid. The pore-fluid pressure coefficient for a partially saturated porous media is therefore given 

as: 

𝐵 =
𝛿𝑢𝑓

𝛿𝑝
=

𝛽𝑢

(𝜃𝑤𝛽𝑤 + 𝜃𝑎𝑖𝑟𝛽𝑎𝑖𝑟)
 

Equation 64 

Assuming the control volume to be saturated and comprising an isotropic linear elastic material, the 

undrained compressibility is given by: 

1

𝛽𝑢
= 𝐾 =

𝐸

3(1 − 2𝜈)
 

Equation 65 

where 𝐾 is the inverse of the undrained bulk modulus and 𝐸 and 𝜈 are the total stress (undrained) 

elastic modulus and Poisson ratio as indicated by the omission of the prime notation. The undrained 

parameters are related to the effective stress moduli and 𝐾𝑒 (Equation 61) by (Naylor, 1974):  

𝐸

𝐸′
=

3(1 − 2𝜈′) + 𝐸′/𝐾𝑒

2(1 − 2𝜈′)(1 + 𝜈′) + 𝐸′/𝐾𝑒
 

Equation 66 

and 

𝑣 =
(1 − 2𝜈′)(1 + 𝜈′) + 𝐸′𝜈′/𝐾𝑒

2(1 − 2𝜈′)(1 + 𝜈′) + 𝐸′/𝐾𝑒
 

Equation 67 

Assuming water incompressible (i.e. 𝐾𝑒 = ∞), although theoretically incorrect, causes Equation 66 and 

Equation 67 to revert to the expressions commonly presented in soil mechanics textbooks: 

𝐸 =
3𝐸′

2(1 + 𝜈′)
 

Equation 68 

and  

𝑣 = 0.5 Equation 69 
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Equation 64 through Equation 69 reveals that the undrained response of a saturated, isotropic, linear 

elastic porous medium will always be characterized by 𝐵 < 1. The pore-fluid, having finite 

compressibility (i.e. 𝐾𝑒 < ∞), will always volumetrically compress and therefore so too will the soil 

structure. The undrained response will be characterized by 𝐵 → 1, and therefore 𝑣 → 0.5 if the soil 

structure is much more compressible than that of water. Numerical instability can occur; however, if the 

total stress Poisson’s ratio 𝜈 approaches 0.5. The equivalent total stress Poisson’s ratio in GeoStudio is 

limited to 0.499 by recalculating the equivalent bulk modulus of the pore-fluid 𝐾𝑒 via Equation 67. 

3.7 Consolidation (Coupled Formulation) 
Biot (1941) proposed a general theory of consolidation assuming isotropy, linear elasticity, small strains, 

incompressible pore-fluid, and Darcian flow. The formulation of Biot (1941) has been widely accepted 

and expanded to account for other physical processes such soil grain compressibility. Biot (1941) derived 

the general equations of consolidation by making the assumption that the water may contain air 

bubbles. Fredlund and Morgenstern (1979) later showed that the constitutive equation for an 

unsaturated soil with a continuous air phase has the same form as that for a discontinuous air phase. 

Dakshanamurthy et al. (1984) provided a more rigorous coupled formulation for an unsaturated soil 

based on the work of Fredlund and Morgenstern (1979). Wong et al. (1988) solved the coupled 

equations of Dakshanamurthy et al. (1984) using the finite element method.  

A by-product of the formulation procedure used by Biot (1941) is that stress-strain constitutive 

properties were contained within the terms of the water transfer equation describing changes in 

volumetric water content. This in-turn restricted the use of different types of constitutive models and 

makes implementation within a finite element program cumbersome. The coupled consolidation 

formulation presented herein is similar to that of Biot (1941); however, the material property 

characterizations follow more closely that of Fredlund and Rahardjo (1993). In addition, consideration is 

given to the compressibility of water. The derivation of an alternative continuity equation was 

motivated by the needs for more transparent material property definitions and the flexibility to 

implement different stress-strain constitutive models.  

The partial differential equation governing groundwater flow through porous media is presented by 

GEOSLOPE International Ltd. (2020). The conservation of mass statement requires that the difference in 

the rate of mass flow into and out of a control volume must be equal to the rate of change in mass 

within the REV, as follows: 

�̇�𝑠𝑡 ≡
𝑑𝑀𝑠𝑡

𝑑𝑡
= �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 + �̇�𝑆 

Equation 
70 

where 𝑀𝑠𝑡 is the stored mass, the inflow and outflow terms, 𝑚𝑖𝑛 and 𝑚𝑜𝑢𝑡, represent the mass 

transported across the surface of the control volume, and 𝑀𝑆 represents a mass source or sink within 

the REV. The over-dot indicates a time-derivative (rate) of these quantities.  

The rate of change in the mass of water stored within the control volume is (ignoring changes in vapour 

content): 
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�̇�𝑠𝑡 = �̇�𝑤 Equation 71 

where �̇�𝑤 represents the rate of change of liquid water. The rate of change in the stored liquid water is 

given by: 

�̇�𝑤 =
𝜕(𝜌𝑤𝜃𝑤)

𝜕𝑡
𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 72 

which can be expanded to (ignoring thermal expansion of water): 

�̇�𝑤 = 𝜌𝑤 (𝜃𝑤𝛽𝑤

𝜕𝑢𝑤

𝜕𝑡
+

𝜕𝜃𝑤

𝜕𝑡
) 

Equation 73 

where 𝜌𝑤 is the density of water, 𝜃𝑤 is the volumetric water content, 𝛽𝑤 is the isothermal 

compressibility of water (~4.8E-10 m2/N at 10°C), 𝑢𝑤 is the pore-water pressure. The time derivative of 

volumetric water content in is given by: 

𝜕𝜃𝑤

𝜕𝑡
=

𝜕(𝑆𝑛)

𝜕𝑡
= 𝑆

𝜕𝑛

𝜕𝑡
+ 𝑛

𝜕𝑆

𝜕𝑡
 

Equation 74 

 

where 𝑆 is degree of saturation and 𝑛 is porosity. The first term in Equation 74 characterizes the change 

in volumetric water content associated with a change in porosity at constant saturation and is given by: 

𝑆
𝜕𝑛

𝜕𝑡
= −𝑆

𝜕𝜀𝑝

𝜕𝑡
 

Equation 75 

 

The leading negative sign links volumetric compression (positive) to expulsion of water from the pore-

volume (negative) and is associated with an increase in mean effective stress or matric suction. The 

second term in Equation 74 characterizes the change in volumetric water content associated with a 

change in degree of saturation at constant porosity and is given by: 

𝑛
𝜕𝑆

𝜕𝑡
= 𝑚𝑤

𝜕𝜑

𝜕𝑡
 

Equation 76 

 

where 𝑚𝑤 is the slope of the volumetric water content function and the matric suction, 𝜑, is the 

difference between pore-air pressure and pore-water pressure (𝜑 = 𝑢𝑎 − 𝑢𝑤). Assuming instantaneous 

equilibrium of the air pressures gives: 

𝑚𝑤

𝜕𝜑

𝜕𝑡
= − 𝑚𝑤

𝜕𝑢𝑤

𝜕𝑡
 

Equation 77 

 

The total rate of change in the mass of water stored within the REV must be equal to the difference 

between the rate of mass inflow (�̇�𝑖𝑛) and the rate of mass outflow (�̇�𝑜𝑢𝑡). These rates of mass flow 

describe processes of water transport across the REV control surfaces. All flows occur in response to 
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energy gradients. In the case of liquid water, flow can occur due to mechanical (elastic potential, 

gravitational potential, kinetic), electrical, thermal, or chemical energy gradients; however, only 

mechanical energy gradients are considered. The mass flow rate of liquid water in response to 

mechanical energy gradients can be described using Darcy’s Law for a variable density fluid (e.g., Bear, 

1979; Bear, 1988): 

�̇�𝑤 = 𝜌𝑤𝑞𝑤𝑑𝑥𝑑𝑧 =
−𝐾𝑤

𝑔
(
𝜕𝑢𝑤

𝜕𝑦
+ 𝜌𝑤𝑔

𝜕𝑦

𝜕𝑦
) 𝑑𝑥𝑑𝑧 

Equation 78 

where 𝑞𝑤 is the water flux, 𝐾𝑤 is the isothermal liquid water hydraulic conductivity, and 𝑔 is the 

acceleration due to gravity.  

Substitution and expansion of the rate equations into the conservation statement and division by the 

dimensions of the control volume gives:  

𝜌𝑤 (𝜃𝑤𝛽𝑤

𝜕𝑢𝑤

𝜕𝑡
− 𝑆

𝜕𝜀𝑝
𝜕𝑡

− 𝑚𝑤

𝜕𝑢𝑤

𝜕𝑡
) =

𝜕

𝜕𝑦
[
𝐾𝑤

𝑔
(
𝜕𝑢𝑤

𝜕𝑦
+ 𝜌𝑤𝑔

𝜕𝑦

𝜕𝑦
)] 

Equation 79 

 

The second term of Equation 79 conveniently embodies the stress-strain response. For a fully saturated 

soil, the drainage term is omitted and the degree of saturation is equal to 1, giving:  

𝜃𝑤𝛽𝑤

𝜕𝑢𝑤

𝜕𝑡
−

𝜕𝜀𝑝
𝜕𝑡

= 𝑛𝛽𝑤

𝜕𝑢𝑤

𝜕𝑡
− 𝛽

𝜕𝑝′

𝜕𝑡
=

𝜕

𝜕𝑦
[
𝑘𝑤

𝜌𝑤𝑔
(
𝜕𝑢𝑤

𝜕𝑦
+ 𝜌𝑤𝑔

𝜕𝑦

𝜕𝑦
)] 

Equation 80 

 

where 𝑝’ is mean effective stress and 𝛽 is equal to the inverse of the effective bulk modulus 𝐾′ and 

taken as positive. Equation 80 clearly highlights that the time derivative of the volumetric strain is the 

coupling term. Additional insight is gained by considering the undrained loading condition, which 

simplifies Equation 80 to: 

(𝛽 + 𝑛𝛽
𝑤
)
𝜕𝑢𝑤

𝜕𝑡
= 𝛽

𝜕𝑝

𝜕𝑡
 

Equation 81 

 

or: 

𝜕𝑢𝑤

𝜕𝑡
=

𝛽

(𝛽 + 𝑛𝛽𝑤)

𝜕𝑝

𝜕𝑡
 

Equation 82 

 

which indicates that the pore-water pressure response within a saturated geological unit will be some 

fraction of the mean total stress change when the response is undrained. The commonly cited Bishop 

(1954) pore-water pressure coefficient 𝐵 is obtained from Equation 82 as:  
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𝐵 =
𝛿𝑢𝑤

𝛿𝑝
=

𝛽

(𝛽 + 𝑛𝛽𝑤)
=

1

1 + 𝑛
𝛽𝑤
𝛽

=
1

1 + 𝑛
𝐾′

𝐾𝑤

 
Equation 83 

 

For example, a perfectly rigid soil structure (i.e. 𝛽 = 0) would not generate excess pore-water pressure 

upon loading. Conversely, a soft soil (i.e. 𝛽 ≫ 𝛽𝑤) would generate excess pore-water pressures that are 

approximately equal to the change in mean total stress.  

The coupling term for the stress-strain equation is introduced by substitution of the constitutive law for 

the solid phase (Equation 53) into Equation 50: 

{𝛿𝜎} = [𝐷′]{𝛿𝜀} + {𝛿𝜎𝑓} Equation 84 

 

Equation 84 suggests that the total stresses are composed of two parts: one that is caused by 

hydrostatic pressure of water filling the pores, the other that is caused by the average stress in the soil 

skeleton. The stresses are considered to be carried partly by the water and partly by the solid (Biot, 

1941). Equation 84 is invalid if a soil is unsaturated because the relationship between total stress and 

pore-water pressure is not linear. A more general relationship for saturated-unsaturated soil is given by: 

{𝛿𝜎} = [𝐷′]{𝛿𝜀} + {𝑚}𝛼𝛿𝑢𝑤 Equation 85 

 

where  

{𝑚}𝑇 = {1 1 1 0 0 0} Equation 86 

 

and 𝛼 is a coefficient varying from 0 to 1.0. The matrix {𝑚}𝑇 comprises ones in the first three positions 

because water pressure acts isotopically. The last three positions of {𝑚}𝑇 are zero because water cannot 

sustain shear stress. Expansion of Equation 85 gives the six total stress increments, one of which is: 

𝛿𝜎𝑥𝑥 =
𝐸′

(1 + 𝜈′)(1 − 2𝜈′)
(𝛿𝜀𝑥𝑥(1 − 𝜈′) + 𝜈′(𝛿𝜀𝑦𝑦 + 𝛿𝜀𝑧𝑧)) + 𝛼𝛿𝑢𝑤 

Equation 87 

 

An increment in the pore-water pressure will cause an increase in total stress and therefore a decrease 

in effective stress. Similarly, a decrement in pore-water pressure will cause a decrease in total stress, or 

an increase in effective stress.  

The coefficient 𝛼 intuitively varies between 0 and 1 depending on the degree of saturation. The 

coefficient 𝛼 is assumed equal to the effective saturation given as (van Genuchten, 1980): 

𝛼 = 𝑆𝑒 =
𝜃𝑤 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
 

Equation 88 
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In a consolidation analysis, the primary degrees of freedom at each node are the incremental 

displacements and incremental pore fluid pressures. By solving the water flow equation and stress-

strain equation in a mathematically coupled manner, equilibrium and mass conservation is achieved 

simultaneously. Consider for example the loading of a soft soil with a low hydraulic conductivity. The 

tendency for volumetric compression must be satisfied by an expulsion of water from the pore space 

(Equation 80), causing a gradient in pore-water pressures to be established. The incremental change in 

pore-water pressure will equal the change in stress if water is not expulsed from the pore-space, 

implying that the change in effective stress is near zero. Volumetric strain is induced as water is 

expulsed from the pore space. 

3.8 Structural Elements 
The use of structural support (e.g., beams, cables, geosynthetics) to stabilize a soil mass is an important 

aspect of geomechanical analysis. SIGMA/W can be used to model structures of arbitrary geometry and 

properties and the corresponding interaction with soil or rock. 

Bathe (2006) provides a detailed description of the formulation of structural elements. Even though 

some structural elements do not resist bending (e.g., cables, geosynthetics) the basic concepts 

pertaining to structural elements are most effectively explored by considering an element with flexural 

stiffness. Figure 4 shows a point on the mid-plane of a beam element being displaced by �̃� normal to the 

mid-surface (neutral axis) in the direction of the �̃� local axis. The mid-plane is aligned with the local axis 

�̃� and the local �̃� axis is out-of-plane. A key assumption of the formulation, which corresponds to 

Timoshenko beam theory, is that a plane section originally normal to the neutral axis remains plane, but 

because of shear deformations, this section does not remain normal to the neutral axis (Bathe, 2006). 

The total rotation of the plane originally normal to the neutral axis of the beam is given by the rotation 

of the tangent to the neutral axis and the shear deformation (Figure 4a): 

𝛽 =
𝑑�̃�

𝑑�̃�
− 𝛾 Equation 89 

 

where 𝛾 is a constant shear strain across the section.  
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Figure 4. Beam deformations including shear effect (after Bathe, 2006): (a) deformation of cross section; (b) displacement 
and rotation at node 𝒌 shared by element 1 and 2.  

The transverse displacement �̃� and total rotation 𝛽 at any location within an element can be 

interpolated from the nodal values �̃�𝑘 and 𝜃𝑘 at node 𝑘 (Figure 4b). The shear strain 𝛾 is therefore a 

secondary value calculated from the independent variables �̃� and 𝛽 (note: the assumption of 

compression positive changes the sign in Equation 89): 

𝛾 = −
𝑑�̃�

𝑑�̃�
+ 𝛽 Equation 90 

 

The bending strain is calculated as: 

𝜅 =
𝑑𝛽

𝑑�̃�
 Equation 91 

 

A point on the beam could also be displaced tangential to the mid-plane (�̃�) in the direction of local axis 

�̃�, resulting in an axial strain defined as: 

𝜀 = −
𝑑�̃�

𝑑�̃�
 Equation 92 

 

A transverse displacement (�̃�) in the direction of the local axis �̃� generates additional shear and 

bending strains. The complete set of strain increments is summarized as: 

{𝛿𝜀}𝑇 = {𝛿𝜀1 𝛿𝛾12 𝛿𝛾13 𝛿𝜅3 𝛿𝜅2} Equation 93 
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where the subscripts 1, 2, and 3 correspond to the local axis �̃�, �̃� and �̃�, respectively. The transverse 

displacements �̃� (2) and �̃� (3) produce rotation about the �̃� (𝜅3) and �̃� (𝜅2), respectively, and generate 

shear strains on the plane normal to the �̃� (1) axis in the �̃� (𝛾12) and �̃� (𝛾13), respectively. The 

corresponding force increments and bending moments are given by: 

{𝛿𝜎}𝑇 = {𝛿𝑁1 𝛿𝑆12 𝛿𝑆13 𝛿𝑀3 𝛿𝑀2} Equation 94 

 

where 𝑁 is an axial force, 𝑆 a shear force, and 𝑀 a bending moment. The strain increments are related 

to the force increments and bending moments constitutive law that is appropriate to the structural 

component. The structural elements available in SIGMA/W are discussed further in Section 6.  

Plate and geosynthetic structural elements can be used in an axisymmetric analysis. The transverse 

displacement �̃� in the local axis �̃� direction (i.e. along the out-of-plane arc length) produces a 

circumferential strain: 

𝜀3 = −
𝑑𝑟

𝑟0
 Equation 95 

 

where 𝑟0 is the circumferential radius and 𝑟 the displacement in the radial direction, which can be 

calculated from the local displacements �̃� and �̃�. In the case of the plate, which effectively becomes a 

shell in an axisymmetric analysis, the transverse displacement �̃� redefines 𝜅2 as the circumferential 

bending strain (Day, 1990). The circumferential bending strain would be relevant, for example, if 

modelling a cylinder under a non-uniform (e.g. parabolic) internal pressure distribution.  

3.9 Stress Redistribution 
Potts and Zdravković (2012) proposed a rigorous and consistent methodology for accounting for partial 

material factors in finite element analysis. The procedure is generalized and can be applied to any 

elastic-plastic constitutive model with varying degrees of complexity. The procedure can be adapted to 

perform three types of stress redistribution analyses: 

1. Stress Correction (Section 4.4.1): to redistribute stresses within elements that violate the failure 

criteria and are therefore in illegal stress space; 

2. Strength Reduction Stability (Section 4.4.2): to determine the factor by which the strength of all 

materials must be reduced to produce a global rupture zone (i.e. failure) and therefore 

determine the critical mode of failure (i.e. location of the rupture zone); 

Potts and Zdravković (2012) developed the procedure by introducing a partial material factor 𝛾𝑚 as an 

additional state parameter in the yield function: 

𝐹({𝜎}, {𝑘}, 𝛾𝑚) = 0 Equation 96 
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where the partial factor 𝛾𝑚 is the ratio of characteristic strength parameters to design strength 

parameters: 

𝛾𝑚 =
tan  𝜙′

𝑐

tan𝜙′
𝑑

=
𝑐′

𝑐

𝑐′
𝑑

=
𝑆𝑢,𝑐

𝑆𝑢,𝑑
 Equation 97 

 

where the subscripts 𝑐 and 𝑑 indicate characteristic (unfactored) and design (factored) values, 

respectively. The consistency condition requires that the stress state remain on the yield function when 

plastic straining is occurring, which requires the function to be written as: 

𝛿𝐹({𝜎′}, {𝑘}, 𝛾𝑚) = {
𝜕𝐹({𝜎′}, {𝑘})

𝜕𝜎′ } {𝛿𝜎′} + {
𝜕𝐹({𝜎′}, {𝑘})

𝜕𝑘
} {𝛿𝑘} 

+
𝜕𝐹({𝜎}, {𝑘}, 𝛾𝑚)

𝜕𝛾𝑚
𝛿𝛾𝑚 = 0 

Equation 98 

 

Following the procedure outlined in Section 3.4 with Equation 98 (instead of Equation 39) produces a 

‘modified’ elastic-plastic formulation. The essence of that formulation is intuitively summarized as: 

{𝛿𝜎} = [𝑫]({𝛿𝜀} − {𝛿𝜀𝑝}) − {𝛿𝜎𝑐} Equation 99 

 

where {𝛿𝜎𝑐} is the stress correction associated with incrementing the partial factor. As with a 

conventional elastic-plastic formulation, the elastic strain increments are calculated in Equation 99 as 

the difference between the total strain increments and plastic strain increments. The inclusion of the 

partial material factor produces additional plastic strains that result from incrementing the partial 

factor; that is, reducing the material strength parameters and therefore changing the size of the yield 

surface. These additional plastic strains result in the stress correction increment 𝛿𝜎𝑐. The stress path 

produced by the correction is controlled by the constitutive model, particularly the yield function and 

plastic potential.  

A partial factor is calculated by the solver if a Stress Correction (Section 4.4.1) or Strength Reduction 

Stability analysis is being conducted (Section 4.4.2). The specialization of the procedures for these 

different analyses is discussed in the corresponding sections.  

Figure 5 depicts a reduction in the strength parameter 𝑔(𝜃) (via a reduction in 𝜙′) that defines the slope 

of the Mohr-Coulomb failure surface in the 𝑝′ − 𝑞 stress plane at a particular Lode angle 𝜃 (Section 5.8). 

The initial stress state is on the failure surface at the beginning of an increment 𝐹({𝜎0}, {𝑘}, 𝛾𝑚) = 0, 

but violates the yield condition at the end of the partial factor increment 𝐹({𝜎0}, {𝑘}, 𝛾𝑚 + 𝛿𝛾𝑚) > 0 

(i.e. using the initial stresses {𝜎0}). The stress correction 𝛿𝜎𝑐 is calculated over the entire partial factor 

increment 𝛿𝛾𝑚. The direction of the stress correction is controlled partly by the outward normal to the 

plastic potential (not shown; refer to Section 5.8), which defines the relative magnitudes of the plastic 
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volumetric strain 𝛿𝜀𝑝
𝑝

 and the plastic deviatoric strain 𝛿𝜀𝑞
𝑝

 (Section 3.4). The outward normal is assumed 

vertically upwards in Figure 5 (i.e. 𝛿𝜀𝑝
𝑝

= 0 while 𝛿𝜀𝑞
𝑝
> 0), which corresponds to a horizontal plastic 

potential passing through the initial stress state {𝜎0}. The stress correction, in this specific case (dilation 

angle = 0), therefore shows a decrease in the deviatoric stress at constant mean effective stress.  

 

Figure 5. Stress correction associated with the increment in the partial factor.  

4 Analysis Types 
There are four analysis types in SIGMA/W including: 1) In Situ; 2) Load-Deformation; 3) Consolidation; 

and, 4) Stress Redistribution. An In Situ analysis is conducted using either the Gravity Activation or 𝐾0 

procedures to establish initial stresses. Load-Deformation analyses are used to analyze the stress-strain 

response of a geotechnical structure in which the pore-water pressures are not time-dependent. A 

Consolidation analysis solves the coupled stress-strain and water transfer equations and therefore 

simulates time-dependent changes in pore-water pressure and effective stress. The Stress Redistribution 

analysis type is concerned with ensuring that the simulated stresses adhere to a failure criteria and can 

be used to: i) correct stresses in illegal stress space (e.g. due to gravity activation); ii) perform a strength 

reduction stability analysis; and, iii) assess the safety factor in accordance with limit state design.  

4.1 In Situ  

4.1.1 Gravity Activation 

Initial stresses can be generated by gravity activation and then optionally altered by the 𝐾0 procedure 

(Section 4.1.2). The gravity activation procedure creates a vertical total stress 𝜎𝑦𝑦 field, which is in 

equilibrium with the body forces, and a vertical effective stress 𝜎′
𝑦𝑦 = 𝜎𝑦𝑦 − 𝑢𝑤 field, where 𝑢𝑤 is the 

pore-water pressure. The simulated horizontal effective stresses 𝜎′
𝑥𝑥 are predominantly controlled by 

Poisson’s ratio 𝜈′ and the geometry of the domain. The gravity activation procedure assumes the 

material response is isotropic and linear elastic, making consideration of past loading history impossible. 

The 𝐾0 procedure can be used to overcome this limitation, but only if a rather strict set of criteria is 

obeyed (Section 4.1.2). 

The gravity activation procedure may be used for cases involving a sloping ground surface (Table 3). 

Paradoxically, most problems involving a sloping ground surface (e.g. eroded valleys) comprise soils with 
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a stress history pertaining to overconsolidated soils. For such cases, neither the gravity activation nor 

the 𝐾0 procedure is ideally suited for establishing the initial stresses (Table 3). Section 4.1.2 provides the 

necessary background information and procedures for such scenarios and clarifies the conditions placed 

on the 𝐾0 procedure. Furthermore, Section 4.1.2 provides guidance on the selection of an appropriate 

Poisson’s ratio for the establishment of initial stresses by gravity activation.  

The following should be noted:  

1. A gravity activation analysis ignores all non-zero stress and displacement boundary conditions 

except for the hydrostatic stress boundary condition that is used to represent ponding on the 

ground surface; 

2. Poisson’s ratio 𝜈′ is limited to 0.499 (maximum) to prevent numerical an ill-conditioned elastic 

constitutive matrix (Equation 24); and, 

3. The gravity activation procedure can produce stresses that violate the failure condition. A stress 

correction analysis should be completed to return the stresses to legal stress space before 

completing additional stress-strain analyses (Section 4.4.1).  

Table 3. Applicability of the gravity activation procedure and combined gravity activation with 𝑲𝟎 procedures.   

State  Condition 11 Condition 22 

𝑂𝐶𝑅 = 1.0 

Gravity Activation Yes Gravity Activation Yes4 

+ 𝑲𝟎 Procedure Yes + 𝑲𝟎 Procedure No 

𝑂𝐶𝑅 ≥ 1.0 

Gravity Activation Yes3 Gravity Activation No5 

+ 𝑲𝟎 Procedure Yes + 𝑲𝟎 Procedure No5 

1One dimensional and axially symmetric stress history involving a horizontal ground surface with hydrostatic groundwater 

conditions and horizontal stratigraphic boundaries 
2Sloping ground surface and/or groundwater flow and/or and sloping stratigraphic boundaries 
3Horizontal effective stresses are controlled by Poisson’s ratio if gravity activation is being applied; consequently, an artificial 

value of Poisson’s ratio could be calculated from Equation 103 (Section 4.1.2) to achieve the desired response if 𝜈′ < 0.499. 

The less ambiguous approach in this case is to apply the 𝐾0 procedure.  
4A sloping ground surface is often associated with erosional processes, which leads to overconsolidation. As such, the use of 

gravity activation procedures is assumes that all soils are ‘nearly’ normally compressed (i.e. only lightly overconsolidated). 
5Simulation of the pseudo geological history is required (Section 4.1.2). 

4.1.2 𝑲𝟎 Procedure 

The 𝐾0 procedure makes it possible to capture the stress history for cases involving horizontal ground 

surface and stratigraphic layers and hydrostatic groundwater conditions (Table 3). The stress history of 

soils under these conditions is entirely one-dimensional and axially symmetric. The one-dimensional 

loading might have involved processes such as glacial advance or pore-water pressure decreases, while 

the unloading might have involved processes such as erosion, pore-water pressure increases, or glacial 

recession. The stress history of one-dimensional axisymmetric deformation can be characterized by ratio 

of horizontal to vertical effective stress: 
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𝐾0 =
𝜎′

𝑥𝑥

𝜎′
𝑦𝑦

=
𝜎′

𝑧𝑧

𝜎′
𝑦𝑦

 
Equation 100 

 

where 𝐾0 is called the at-rest earth pressure coefficient. The 𝐾0 procedure uses the specified 𝐾0 to 

calculate the current initial horizontal effective stresses as:  

𝜎′
𝑥𝑥 = 𝜎′

𝑧𝑧 = 𝐾0𝜎
′
𝑦𝑦 Equation 101 

 

where 𝜎′
𝑦𝑦 is obtained via the gravity activation procedure (Section 4.1). The value of 𝐾0 is dependent 

on the loading history of the soil. Soils that have been subjected to a monotonic one-dimensional 

normal compression (𝑛𝑐) stress history require 𝐾0 = 𝐾0
𝑛𝑐. Jâky (1946) deduced the following 

relationship between 𝐾0
𝑛𝑐 and the angle of shearing resistance 𝜙′ for one-dimensionally and normally 

compressed soils: 

𝐾0
𝑛𝑐 ≈ 1 − sin𝜙′ Equation 102 

 

Soils that have been subjected to subsequent one-dimensional unloading, and are therefore 

overconsolidated, require 𝐾0 = 𝐾0
𝑜𝑐. Assuming that the soil behaved isotropically and elastically 

immediately upon unloading implies a stress path given by: 

𝛿𝜎′
𝑥𝑥

𝛿𝜎′
𝑦𝑦

=
𝑣′

1 − 𝑣′
 

Equation 103 

 

which can be converted into a relationship between 𝐾0
𝑜𝑐  and the overconsolidation ratio (𝑂𝐶𝑅): 

𝐾0
𝑜𝑐 = (𝑂𝐶𝑅)𝐾0

𝑛𝑐 − (𝑂𝐶𝑅 − 1)
𝑣′

1 − 𝑣′
 

Equation 104 

 

where the 𝑂𝐶𝑅 is defined as: 

𝑂𝐶𝑅 =
𝜎′

𝑦𝑦
𝑚𝑎𝑥

𝜎′
𝑦𝑦

 Equation 105 

 

and 𝜎′
𝑦𝑦
𝑚𝑎𝑥

 is the past maximum value of the vertical effective stress and 𝜎′
𝑦𝑦 is the current, or initial, 

vertical effective stress. Most soils exhibit a non-linear effective stress path (i.e. non-linear elasticity) on 

unloading, producing a stress history that is better approximated by a relationship of the form (Schmidt, 

1966): 
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𝐾0
𝑜𝑐 = 𝐾0

𝑛𝑐𝑂𝐶𝑅𝑎 Equation 106 

 

where 𝑎 is an exponent that is dependent on the plasticity of the soil and is generally about 0.5 

(Meyerhof, 1976). Alternative approximations exist in the literature for both 𝐾0
𝑛𝑐 and 𝐾0

𝑜𝑐.  

The user-defined value of 𝐾0 can produce stresses that violate the Mohr-Coulomb failure condition in 

the active or passive states. The theoretical limitations on the earth pressure coefficient for a soil 

without cohesion are: 

1 − sin𝜙′

1 + sin𝜙′
< 𝐾0 <

1 + sin𝜙′

1 − sin𝜙′
 

Equation 107 

 

where the lower and upper bounds are the active 𝐾𝑎 and passive 𝐾𝑝 earth pressure coefficients, 

respectively.  

The following should be noted: 

1. The 𝐾0 procedure is invalid if the principal stress directions are not aligned with the horizontal 

and vertical direction, which requires that the ground surface, stratigraphic layers, and phreatic 

surface are nearly horizontal (Table 3). A stress correction (Section 4.4.1) analysis might ensure 

that the stresses obey the failure criteria; however, the stress redistribution algorithms cannot 

ensure force equilibrium.  

2. The pseudo-geological history can be modeled to establish the initial stresses for cases that 

violate the requirements of the 𝐾0 procedure (Table 3). Consider an eroded river valley cut into 

horizontal and overconsolidated soil layers. Prior to the erosional down cutting, the soils may 

have been subjected to a one-dimensional axisymmetric stress history that involved loading and 

unloading via deposition, erosion, or other processes. In such cases, the 𝐾0 procedure may be 

used to approximate the initial stress prior to down-cutting (Figure 6a). The down-cutting is then 

simulated via a plane strain Load-Deformation analyses involving excavation (Figure 6b).  

 

Figure 6. Geometry used to model erosional down cutting of an overconsolidated soil. a) Geometry for gravity activation 
analysis with K0 procedure; and, b) geometry after load-deformation analysis of ‘excavation’ sequence. 
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4.2 Load-Deformation Analysis 
A Load-Deformation analysis is used to determine the response of a geotechnical structure subject to a 

force or displacement boundary condition. This analysis type can provide information on the 

displacements of the geotechnical structure and adjacent ground, the bending moments, axial forces, 

and shear forces in structural members, and the forces that develop in adjacent structures. A Load-

Deformation analysis does not provide information on time-dependent pore-water pressure response, 

but can be used with material having an Undrained Response type to analyze the undrained pore-water 

pressure response to loading/unloading. A Load-Deformation analysis requires the following 

information: 

1. Initial effectives stresses; 

2. Final pore-water pressures; 

3. Number of load steps; 

4. Boundary conditions; and, 

5. Material properties.  

The initial and final pore-water pressures are used to automatically calculate an increment (or 

decrement) in the pore-water pressures, which is then imposed as an isotropic boundary condition (see 

Section 7.4). For example, this option can be used to model dewatering of an excavation. The pore-

water pressure boundary condition will be null if the final and initial pore-water pressures are obtained 

from the same source and are therefore equivalent.  

4.3 Consolidation (Coupled Formulation) 
A Coupled Consolidation analysis is used to analyze the time dependent pore-water pressure response, 

and therefore time-dependent deformation, common to many geotechnical problems. The generation 

of excess pore-water pressure due to embankment loading is a typical example of this process. Similarly, 

the removal of soil for an excavation (i.e., unloading) can cause a reduction in pore-water pressure in 

soils with certain stiffness and hydraulic properties. A consolidation analysis is accomplished by 

combining and simultaneously solving the equation governing stress-strain response (Equation 85) with 

the equation governing pore fluid transfer through the soil matrix (Equation 79). The following 

components must be defined for a consolidation analysis: 

1. Initial stresses and pore-water pressures; 

2. Time duration and number of steps; 

3. Hydraulic and stress-strain boundary conditions; and, 

4. Hydraulic and stress-strain material properties.  

The requirement for initial stress conditions is consistent with a Load-Deformation analysis (Section 4.2). 

The initial pore-water pressure conditions must be defined because the transient groundwater flow 

equation computes the change in pore-water pressure across a time step, making it necessary to know 

the conditions at the start of the time step. Naturally, it follows that a time increment must be defined, 

along with the total duration of the analysis.  
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A consolidation analysis requires the definition of both hydraulic and stress-strain boundary conditions. 

The stress-strain boundary conditions discussed in Section 7 are relevant to this analysis type. Many 

practical geotechnical engineering problems will specifically involve construction and/or excavation 

boundaries via material activation/deactivation. Most of the hydraulic boundary conditions available in 

SEEP/W can be used in a consolidation analysis (GEOSLOPE International Ltd., 2017). The most used 

hydraulic boundary conditions include total head, pressure head, water rate, water flux, and the 

potential seepage face.  

All stress-strain material models discussed in Section 5 can be used in a consolidation analysis. The 

example files should be consulted to understand the anticipated response in a consolidation analysis. 

Similarly, the saturated-only and saturated-unsaturated material models from SEEP/W are available in 

SIGMA/W.  

4.4 Stress Redistribution 
Section 3.9 provides an overview of the theoretical considerations of a stress redistribution analysis, 

which involves the calculation of a stress correction 𝛿𝜎𝑐 that arises from an increment in a partial factor 

𝛾𝑚. The solver calculates the partial factor if the stress redistribution procedures is being used to 

complete a Stress Correction (Section 4.4.1) or a Strength Reduction Stability analysis (Section 4.4.2). 

The specialization of the procedures for these different analyses is discussed in the following sections.  

4.4.1 Stress Correction 

Analyses involving linear elastic material models and sloping ground, such as a Gravity Activation 

analysis, can result in stresses outside the yield surface (illegal stresses) when the elastic material is 

replaced with an elastic-plastic material. A Stress Correction analysis can be used to return stresses 

within a domain to legal stress space; that is, to a location in stress space that is on or below the yield 

surface. In a Stress Correction analysis, regions that require a stress correction must use an elastic-

plastic constitutive model that invokes a Mohr-Coulomb failure law.  

The calculation of a stress correction 𝛿𝜎𝑐 requires a partial factor 𝛾𝑚 (Equation 98), which in-turn 

requires design and characteristic strength parameters (Figure 7). The input strength parameters can be 

interpreted as the design parameters. The failure surface passing through the initial (illegal) stress 

state{𝜎0} can be described by pseudo, and unknown, characteristic strength properties. The relationship 

between the characteristic and design (i.e. input) strength parameters (Equation 98) can be substituted 

into the Mohr Coulomb yield function and the resulting expression solved for the partial material factor 

𝛾𝑚, allowing the strength correction 𝛿𝜎𝑐 to be calculated.  
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Figure 7. Strength reduction procedure used to complete a Stress Correction analysis: Mohr-Coulomb failure surfaces defined 
by pseudo-characteristic and design strengths passing through the initial (illegal) and corrected stress states, respectively.  

The following should be noted: 

1. An initial stress condition must be defined to complete a Stress Correction analysis; 

2. The initial stresses can be obtained from an In Situ, Load-Deformation, or Consolidation Analysis. 

4.4.2 Strength Reduction Stability 

A Strength Reduction Stability (SRS) analysis involves a gradual increase in the partial material factor (i.e. 

reduction in strength) until failure in the soil is fully mobilized, which should correspond to a fully 

developed global rupture zone. A SRS analysis involves first completing a conventional stress-strain 

simulation such as a Gravity Activation or Load-Deformation analysis. The initial stresses within every 

element must start in legal stress space before completing a Strength Reduction Stability analysis. A 

Stress Correction analysis (Section 4.4.1) should first be completed if this condition is not met.  

A SRS stability analysis can be added at any relevant stage of an analysis (e.g. after each construction 

stage) to determine the global factor of safety. The SRS analysis is advantageous because the simulation 

provides information about the global factor of safety and, unlike conventional limit equilibrium (LE) 

stability methods, reveals the mode of failure (i.e. location and shape of the rupture zone) in a natural 

manner. In addition, an SRS analysis can be used to assess both serviceability and ultimate limit states 

(i.e. collapse) of structures interacting with the soils. For example, an SRS analysis could be used to 

simulate the maximum stress transfer onto a pile wall being used to stabilize a slope. A noteworthy 

disadvantage of the SRS analysis is that it cannot be used to explore multiple modes of failure; that is, 

the procedure can only find a single global rupture zone. Fortunately, the Stress Based Stability and LE 

method in SLOPE/W can still be used to calculate the factor of safety for other potential modes of 

failure.  

Advanced soil models are made to behave as a standard Mohr-Coulomb model when completing a 

strength reduction stability analysis. The input strength parameters are interpreted as the characteristic 

(i.e., unfactored) values. The final reduced strength parameters are interpreted as the design (i.e., 

factored) values. A strength reduction stability analysis successively, and incrementally, reduces the soil 

strength parameters by increasing the partial factor for all characteristic strength values until global 

𝑞
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failure is detected (stress path A to 𝐹 in Figure 8). At the point of collapse, the final partial factor is 

equivalent to the global factor of safety (𝐹. 𝑆.): 

𝐹. 𝑆. = 𝛾𝑚 =
tan  𝜙′

𝑐

tan𝜙′
𝑑

=
𝑐′

𝑐

𝑐′
𝑑

=
𝑆𝑢,𝑐

𝑆𝑢,𝑑
 Equation 108 

 

 

Figure 8. Procedure used to complete a Strength Reduction Stability analysis showing an incremental reduction in strength. 

As noted in Section 3.9, the direction of the stress correction is partly controlled by the outward normal 

to the plastic potential, which defines the relative magnitudes of the plastic volumetric strain 𝛿𝜀𝑝
𝑝

 and 

the plastic deviatoric strain 𝛿𝜀𝑞
𝑝

 (Section 3.4). The dilation angle 𝜓 of the Mohr-Coulomb material model 

controls the slope of the plastic potential in the 𝑝′ − 𝑞 stress plane and therefore the direction of the 

outward normal (Section 5.8). Failure within a soil domain does not occur everywhere simultaneously as 

the strengths are reduced. As such, changes to the dilation angle 𝜓 with increasing partial factor 𝛾𝑚 

imposes a control on the deformation patterns – that is, the kinematics of the failure mechanism – and 

therefore the factor of safety. Tschuchnigg et al. (2015a, 2015b) simulate a case involving a soil with 

𝜙′ = 45°. The SRS factor of safety is 1.53 if associated plasticity is assumed (i.e. 𝜓 = 𝜙′) and 

approximately 1.30 if non-associated plasticity is assumed with 𝜓 = 0. Tschuchnigg et al. (2015a, 2015b) 

note, however, that the problem of non-associated flow in SRS analyses is generally insignificant until 

𝜙′ > 35°. Having stated this, the flow law is accommodated in a SRS analysis as follows: 

1. Associated plasticity (i.e. 𝜓 = 𝜙′): the dilatancy angle 𝜓 is reduced incrementally in the same 

way as the friction angle 𝜙′,  

2. Non-associated plasticity with 𝜓 < 𝜙′: the dilation angle 𝜓 is kept constant as long as the 

reduced value for 𝜙′ is larger than 𝜓 . Once 𝜙′ falls to the value of 𝜓, both angles are reduced 

simultaneously.  

The following points about a Strength Reduction Stability analysis should be observed: 

1. Stress dependent changes in stiffness are not considered during the analysis; however, the 

stiffness values at the onset of the analysis are consistent with the state defined by the parent 

analysis.  
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2. Regions that are assigned an elastic material model participate in the stress-strain response of 

the system but do not undergo a stress-correction. 

3. The strength characteristics of structural elements, including the axial capacity 

(tension/compression) or the bending capacity, are not reduced by the global partial factor.  

5 Material Models 

5.1 Synopsis 
Many of the constitutive models presented in the following sections fit within the generalized 

framework for formulating elastic-plastic models (Section 3.4). The stress-strain response of each model 

arises from assumptions about the mathematical descriptions of the elastic properties, yield function 

(Equation 38), plastic potential (Equation 36) and the manner in which the changing size of the yield 

locus is linked to plastic straining (Equation 41). The mathematical descriptions generally provide little 

insight into the parameterization and expected response in a numerical simulation unless the reader is 

intimately familiar with elastic-plastic theory. As such, the ‘Formulation’ section for each constitutive 

model is purposefully restrained to the key, and basic, mathematical ingredients. A more enlightening 

approach to exploring the formulations, and the one adopted here, is quasi-graphical with reference to 

the progress of a conventional drained compression test. Wood (1990) cleverly used this approach to 

elucidate the behaviour of the Modified Cam Clay model in both drained and undrained triaxial 

compression. These sections are titled ‘Conceptual Response’ and occur immediately after the section 

summarizing the material properties. A similar approach is used to present the Hyperbolic 𝐸 − 𝐵 model 

despite it not being formulated based on the generalized framework for elastic-plastic models.  

It is worth noting that only the drained response is considered because: (a) it reveals the role of the 

central material properties; and, (b) further consideration to the undrained or (coupled) consolidation 

responses can be found in the example files. Lastly, the response to triaxial compression does not reveal 

the behaviour of a particular constitutive model to loading conditions in generalized three dimensional 

stress space, such as those involving excavation and construction. Again, the reader is directed to the 

example files and the literature for a more complete discourse on the assumptions and/or limitations of 

any particular constitutive model.  

5.2 Basic Inputs 
All material models require specification of unit weight and initial void ratio. The unit weight is used in 

the calculation of gravity loads (Section 4.1 and 7.3). The void ratio for each material is updated at the 

end of every load/time step based on the volumetric strain. The void ratio can be used to modify the 

hydraulic conductivity in a consolidation analysis (Section 5.4). In some material models, for example 

modified Cam clay, the void ratio is a state parameter that effects the stress-strain behaviour.  
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5.3 Pore-water Pressure Response Types 
Every material model must be assigned a pore-water pressure response type of either Drained or 

Undrained (Section 3.6). The response type of a material is only relevant for Load-Deformation analyses. 

The following should be noted: 

1. Drained response: the pore-water pressure remains unchanged throughout the analysis in 

response to loading/unloading. This response type is used to model well-drained materials in 

Load-Deformation analyses. Specification of a different initial and final pore-water pressure 

condition results in an automatic boundary condition that calculates an isotropic effective stress 

change that equals the pore-water pressure change (Section 7.4) for Drained materials.  

2. Undrained response: the pore-water pressure response due to loading/unloading is calculated 

according to theory outlined in Section 3.6.2. This response type is used simulate an undrained 

response without resorting to a Consolidation analysis.  

3. Materials with different pore-water pressure response types can be combined in a Load-

Deformation analysis.  

4. Response types are ignored in a Consolidation analysis.  

5.4 Hydraulic Properties 
The definition of hydraulic properties is optional for materials used in In Situ, Load-Deformation, and 

Stress Redistribution analyses, but is mandatory for Consolidation analyses. The Saturated Only or 

Saturated-Unsaturated hydraulic models can be used, where the later comprises the volumetric water 

content and hydraulic conductivity. The following should be noted:  

1. An increment or decrement in negative pore-water pressures is an In Situ or Load-Deformation 

analysis is weighted by the effective degree of saturation if a volumetric water content function 

is defined (Section 7.4).  

2. The coupled stress-strain and water transfer equation is solved for all regions/materials in a 

Consolidation analysis; consequently, the Response Type (Section 3.6) is ignored. 

3. Selecting the option ‘No change in water pressures due to volumetric strain’ in the hydraulic 

properties definition implies that that a material will not respond to loading or unloading in a 

Consolidation analysis, although the material will still conduct water due to a gradient in total 

head. 

4. Hydraulic conductivity 𝐾𝑤 is required for a consolidation analysis. The conductivity can vary as a 

function of void ratio through the use of a modifier factor 𝑀𝐹 = 𝐾𝑤 𝐾′
𝑤⁄ , where 𝐾′

𝑤 is the 

reference conductivity. The modifier factor is defined as a function of void ratio 

decrement/increment ∆𝑒 (i.e. 𝑀𝐹 = 𝑀𝐹(∆𝑒)), where ∆𝑒 = 𝑒 − 𝑒0 and 𝑒0 is the initial void 

ratio. For example, the modifier function could be defined by curve fitting laboratory data using 

the relationship 𝑀𝐹 = 𝐾𝑤 𝐾′
𝑤⁄ = 10(∆𝑒/𝐴), where 𝐴 is a constant that controls the non-

linearity in the relationship (e.g. 0.2; Figure 9). Generally, the modifier function will be specified 

over a negative range in ∆𝑒 (i.e. decrement) because the conductivity decreases with decreasing 

void ratio.  
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Figure 9. Example of the hydraulic conductivity modified factor function.  

5.5 Isotropic Elastic Model 
The simplest definition of [𝐷] required by Equation 10 is obtained by assuming isotropic elastic 

behaviour (Section 3.3). The elastic response is described by two independent elastic parameters: 

effective stiffness modulus 𝐸′ and Poisson’s ratio 𝜈′. The modifying term ‘linear’ was purposefully 

excluded because the Isotropic Elastic model can accommodate non-linear elasticity. The effective 

elastic modulus 𝐸′ can be made to vary with y-effective stress through use of a functional relationship 

(Section I.6.1) or by some other means using an Add-in (Section I.6.2). 

5.6 Transverse Isotropic Elastic Model 
Sedimentary depositional environments often produce soil layers that are parallel to a single plane of 

deposition (𝑥 − 𝑧 plane in Figure 12). An axis of symmetry exists in the depositional direction. The 

stress-strain characteristics are different in the depositional direction as compared to those in the plane 

of deposition; however, the characteristics do not change in the plane of symmetry. Figure 12 shows the 

direction of deposition aligned with the y-axis and the plane of deposition parallel to the x-z plane; 

however, the implementation allows for rotation of the plane of deposition about the z-axis (Figure 11). 

The rotated coordinated system is 𝑥’ − 𝑦’ − 𝑧; that is, the 𝑧-axis remains unchanged in the primed and 

unprimed coordinate systems.  
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Figure 10. Axis orientations for transverse isotropy without rotation about the z-axis.  

 

Figure 11. Axis orientations for transverse isotropy with rotation about the z-axis.  

5.6.1 Formulation 

The stiffness matrix [𝐷] for an anisotropic elastic material, with properties defined with respect to a 

local coordinate system (𝑥′𝑦′) rotated from the Cartesian x-axis by angle 𝛽 (Figure 12), is given by: 

[
 
 
 
 
 
 
 
 
 
 𝐴 (1 − (𝜈𝑦′𝑥′

′ )
2 𝐸′

𝑥′

𝐸′
𝑦′

)𝐸′
𝑦′ 𝐴𝜈𝑦′𝑥′

′ (1 + 𝜈𝑥′𝑧′
′ )𝐸′

𝑦′ 𝐴(𝜈𝑥′𝑧′
′ + (𝜈𝑦′𝑥′

′ )
2 𝐸′

𝑥′

𝐸′
𝑦′

)𝐸′
𝑦′

𝐴 (1 − (𝜈𝑥′𝑧′
′ )

2
) (

𝐸′
𝑦′

𝐸′
𝑥′

)𝐸′
𝑦′ 𝐴𝜐𝑦′𝑥′

′ (1 + 𝜈𝑥′𝑧′
′ )𝐸′

𝑦′

𝐴 (1 − (𝜈𝑥′𝑧′
′ )

2 𝐸′
𝑥′

𝐸′
𝑦′

)𝐸′
𝑦′

0 0 0
0 0 0
0 0 0

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

𝐺𝑥′𝑦′ 0 0

𝐺𝑥′𝑦′ 0

𝐺𝑥′𝑧′]
 
 
 
 
 
 
 
 
 
 

  

Equation 109 
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𝐴 =
1

(1 + (𝜈
𝑥 𝑧 
 )

2
) [

𝐸 
𝑦 

𝐸 
𝑥 

(1 − 𝜈
𝑥 𝑧 
 ) − 2 (𝜈

𝑦 𝑥 
 )

2

]

  
Equation 110 

 

Equation 110 follows from symmetry requirements that produce these relationships: 

𝜈𝑥′𝑦′
′ = 𝜈𝑦′𝑥′

′ 𝐸′
𝑥′

𝐸′
𝑦′

 Equation 111 

 

and 

𝐺𝑥′𝑧′ = 
𝐸′

𝑥′

2(1 + 𝜈𝑥′𝑧′
′ )

 Equation 112 

5.6.2 Material Parameters 

Table 4 provides a summary of the user inputs and properties calculated by the solver.  

Table 4. Parameters for the Anisotropic  

Parameters Symbol Symbol (UI) Note 

Stiffness in the depositional direction 𝐸′
𝑦′ 𝐸′

2 Input 

Stiffness in the plane of deposition 𝐸′
𝑥′  𝐸′

1 Input 

Poisson’s ratio for staining in the plane of deposition due to 
stress changes in the direction of deposition 

𝜈𝑦′𝑥′
′  𝜈2

′  Input 

Poisson’s ratio for staining in the direction of deposition due 
to stress changes in the plane of deposition 

𝜈𝑥′𝑦′
′   Calculated 

Poisson’s ratio for staining in the plane of deposition due to 
stress changes in the same plane 

𝜈𝑥′𝑧′
′  𝜈1

′  Input 

Shear modulus in the plane of the direction of deposition 𝐺𝑥′𝑦′  𝐺2 Input 

Shear modulus in the plane of deposition  𝐺𝑥′𝑧′  Calculated 

Angle between the x and x’ axes (counter-clockwise positive) 𝛽 𝐴𝑛𝑔𝑙𝑒 Input 

 

The following restrictions have to be applied to the inputs (Pickering, 1970): 

1. 𝐸′
𝑥′ 𝐸′

𝑦′  and 𝐺𝑥′𝑦′ > 0 

2. −1 < 𝜈
𝑥 𝑧 
 < 1  

3. 1 − 𝜈
𝑥 𝑧 
 > 2(𝐸 

𝑥 𝐸 
𝑦 ⁄ )𝜈

𝑦 𝑥 
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5.7 Hyperbolic 𝑬 − 𝑩 Model 
The Hyperbolic model (Duncan et al., 1980) is sometimes referred to as the hyperbolic 𝐸 − 𝐵 

constitutive model because the bulk modulus (𝐵) is constant during loading while the elastic modulus 

(𝐸) varies according to a hyperbolic relationship (Duncan and Chang, 1970). The assumptions regarding 

the formulation result in non-linearity of the stress-strain response and volumetric response during 

primary loading. The elastic modulus, and therefore the elastic shear modulus, tend towards zero at 

failure, resulting in no additional stress changes with continued straining, and therefore no additional 

volume changes, despite the assumption of a constant bulk modulus. The tendency towards zero 

volume change at failure is in keeping with the concept of a critical state.  

5.7.1 Formulation 

The Hyperbolic model captures the non-linear response of a drained triaxial test for a normally 

compressed specimen (i.e. primary loading). Such a test produces a plot of triaxial deviator stress 𝑞 =

𝜎′
1 − 𝜎′

3 versus axial strain 𝜀1 that is described by a hyperbolic relationship (Figure 12; Konder, 1963):  

𝜀𝑎 = 𝜀1 =
1

𝐸′
𝑖

𝑞

(1 −
𝑞
𝑞𝑎

)
  𝑓𝑜𝑟  𝑞 < 𝑞𝑓 

Equation 113 

where 𝑞𝑎 the asymptotic value of the triaxial shear strength, 𝐸𝑖  the initial small strain tangent stiffness 

quantity, and 𝑞𝑓 the ultimate triaxial deviatoric shear strength given by the Mohr-Coulomb failure law: 

𝑞𝑓 =
2 sin𝜙′

1 − sin𝜙′
(𝑐′ cot𝜙′ + 𝜎′

3) Equation 114 

where 𝑐′ and 𝜙′ are the peak effective stress cohesion and friction angle. The asymptotic shear strength 

is related to the ultimate deviator stress at failure 𝑞𝑓 by: 

𝑞𝑎 =
𝑞𝑓

𝑅𝑓
 Equation 115 

 

where 𝑅𝑓 is the failure ratio, which for most soils is about 0.9.  
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Figure 12. Conventional drained triaxial compression test on a soil described by the Hyperbolic 𝑬 − 𝑩 model: 𝒒 − 𝜺𝟏 stress-
strain plot.  

Differentiating Equation 113 with respect to axial strain gives an expression for tangent stiffness 𝐸𝑡 at 

any point on the 𝑞 − 𝜀1 stress-strain curve (Duncan et al. 1980): 

𝐸′
𝑡 = (1 −

𝑞

𝑞𝑎
)
2

𝐸′
𝑖 Equation 116 

Substitution of Equation 114 and Equation 115 gives:  

𝐸′
𝑡 = (1 −

𝑅𝑓𝑞(1 − sin𝜙′)

2 sin𝜙′ (𝑐′ cot 𝜙′ + 𝜎′
3)

)

2

𝐸′
𝑖 Equation 117 

Equation 117 can be used with a constant Poisson’s ratio, 𝜈′, to calculate a tangent shear modulus (vis 

Equation 26):  

𝐺𝑡 =
𝐸′

𝑡

2(1 + 𝜈′)
 Equation 118 

The initial, and constant, bulk modulus is calculated as: 

𝐾 =
𝐸′

𝑖

3(1 − 2𝜈′)
 Equation 119 

Equation 118 and Equation 119 are in turn used to populate the elastic stiffness matrix (Equation 30), 

thereby completing the mathematical description of the Hyperbolic 𝐸 − 𝐵 model, which, as noted, 

makes use of a constant bulk modulus (Equation 119) and a tangent stiffness modulus (Equation 118) 

that varies according to a hyperbolic relationship (Duncan and Chang, 1970). The Hyperbolic 𝐸 − 𝐵 

model also allows for the (indirect) specification of an unload-reload modulus 𝐸𝑢𝑟.  
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5.7.2 Material Parameters 

Table 5 summarizes the inputs required by the Hyperbolic 𝐸 − 𝐵 model. The initial secant stiffness 𝐸𝑖  

can be assumed constant or made to vary spatially by means of an estimation technique. The unload-

reload modulus 𝐸′
𝑢𝑟, which is depicted in Figure 12, is calculated by the software as:  

𝐸𝑢𝑟 =
𝐾𝑢𝑟

𝐾𝐿
𝐸𝑖 Equation 120 

 

where 𝐾𝐿 is a modulus number. The ratio 𝐾𝑢𝑟/𝐾𝐿 is a user input quantity. The value of 𝐾𝑢𝑟 is always 

larger than the value of 𝐾𝐿 and may be 5 times greater than 𝐾𝐿 for stiff soils such as dense sands and 3 

times greater for soft soils, like loose sands (Duncan et al., 1980).  

Table 5. Parameters for the Hyperbolic 𝑬 − 𝑩 Model 

Parameter Symbol Unit 

Effective (peak) angle of shear resistance 𝜙′  

Effective cohesion 𝑐′  

Initial secant stiffness (via drained triaxial) 𝐸′
𝑖   

Unload-reload stiffness ratio (via drained triaxial) 𝐾𝑢𝑟/𝐾𝐿  

Unload-reload Poisson’s ratio  𝜈′
𝑢𝑟  

Failure ratio 𝑞𝑓 𝑞𝑎⁄  𝑅𝑓  

 

The initial modulus 𝐸′
𝑖 required by the Hyperbolic 𝐸 − 𝐵 may vary considerably with the initial stresses. 

The stress dependency of the initial modulus can be estimated by (Janbu, 1963): 

𝐸′
𝑖 = 𝐾𝐿 (

𝜎′
3𝑖

𝑝𝑟𝑒𝑓)

𝑛

𝑝𝑟𝑒𝑓 Equation 121 

 

where 𝐾𝐿 is a modulus number, 𝑛 an exponent that controls the degree of non-linearity, 𝜎′
3𝑖 the initial 

minor principal effective stress, and 𝑝𝑟𝑒𝑓 the standard atmospheric air pressure, which is included in 

Equation 121 to make the expression independent of the unit system. A typical value of the modulus 

exponent is 0.5. The initial minor principal effective stress can be estimated from initial vertical effective 

stress and the at rest earth pressure coefficient as: 

𝜎′
3
𝑖
≈ 𝐾0𝜎

′
𝑦
𝑖

 Equation 122 

 

5.7.3 Conceptual Response 

Section 5.1 describes the approach being taken here to explore some of most important aspects of the 

Hyperbolic 𝐸 − 𝐵 model. As noted, the reader is directed to the example files and the literature for a 

more complete discourse on the assumptions and/or limitations of any particular constitutive model. 
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The Hyperbolic 𝐸 − 𝐵 model is not formulated based on elastic-plastic theory. Regardless, the basic idea 

of the Hyperbolic 𝐸 − 𝐵 model is to manipulate the stiffness moduli to account for plastic, irrecoverable 

deformations. This is accomplished by reducing the stiffness as the deviatoric stress approaches the 

asymptotic value of the triaxial shear strength 𝑞𝑎 (Equation 116). As such, the following discussion 

makes use of terminology often reserved for describing elastic-plastic constitutive models, such as ‘yield’ 

or ‘plastic’ straining’, in order to identify the behaviour for what it is and to facilitate comparison with 

the other constitutive models.  

Figure 13 depicts the conceptualized simulated results of a conventional drained triaxial test on a 

material represented by the Hyperbolic 𝐸 − 𝐵 model. The results were generated assuming 𝐾𝑢𝑟/𝐾𝐿 > 1 

(Equation 120). It is assumed that the increments starts from stress state 𝐴 lying on the 𝑝’ axis and an 

arbitrary location in the 𝑉 − 𝑝′ compression plane. The route by which point 𝐴 in Figure 13 was reached 

in both the 𝑝′ − 𝑞 effective stress plane and the 𝑉 − 𝑝′ compression plane has been left vague. A 

numerical simulation could have been performed to isotopically compress the sample to a mean 

effective stress in excess of point 𝐴 and then unloaded isotropically to 𝐴, leaving the soil theoretically 

overconsolidated. Regardless, the initial response would have been that of a normally compressed soil 

because the Hyperbolic material parameters do not contain an input to locate the ‘yield surface’ (i.e. 

maximum past deviator stress) in the 𝑝′ − 𝑞 stress plane (e.g. through point B in Figure 13a) relative to 

the initial stress state, making it impossible to initiate (shear) loading in any form other than normal 

compression. 

 

Figure 13. Conventional drained triaxial compression test on a soil described by the Hyperbolic 𝑬 − 𝑩 model: 𝒑′ − 𝒒 effective 
stress plane (with increments of plastic volumetric and deviatoric strain); (b) 𝑽 − 𝒑′ compression plane; (c) 𝒒 − 𝜺𝒒 stress-

strain plot; (d) 𝑽 − 𝜺𝒒 volume-strain plot. 

𝑉

𝑝 

𝑞

𝑝 

𝑞

𝜀𝑞

𝜀𝑞

(a)

(b)

(c)

(d)

𝑉

i so-ncl𝐴

𝐵,𝐷

𝐹

𝐵,𝐷

𝐶

𝐴, 𝐶 𝐴

𝐴

𝐹

𝐹

𝐵,D

𝐹

𝐵,𝐷

𝐶

𝐶
𝑢𝑟𝑙 𝐵 



 

44 

The drained compression from 𝐴 to 𝐵 is associated with primary loading; that is, triaxial compression of 

a normally compressed specimen. Plastic strains develop from the onset of drained compression; 

therefore, the stress-strain plot 𝑞−𝜀𝑞 (Figure 13c) shows a continuous curve as the test proceeds. The 

tangent derivative at any point on the stress-strain curve 𝑞−𝜀𝑞 is equal to 3𝐺𝑡 (Equation 118). The slope 

would be equal to 𝐸′
𝑡 in Figure 13c had the deviatoric stress 𝑞 been plotted against axial strain 𝜀𝑎.  

As already noted, Duncan et al. (1980) formulated the model using a constant bulk modulus to ensure 

that the volumetric strain goes to zero at failure. From the specific volume 𝑉 of the soil at 𝐴 and 𝐵, the 

change in volume can be converted into a volumetric strain increment:  

𝛿𝜀𝑝𝐴𝐵 =
−𝛿𝑉𝐴𝐵

𝑉𝐴
 

Equation 123 

allowing a bulk modulus to be calculated as: 

𝐾′ =
𝛿𝑝′

𝐴𝐵

𝛿𝜀𝑝𝐴𝐵

 
Equation 124 

The result obtained from the simulated result via Equation 124 is equivalent to that obtained more 

directly from Equation 119 using 𝐸′
𝑖 and 𝜈.  

The soil is unloaded at 𝐵 and both 𝐵 and 𝐶 lie on the unloading-reloading line url 𝐵. The bulk modulus 

can again be calculated from the simulated response between 𝐵 and 𝐶, but this time the value is 

equivalent to (see Equation 119): 

𝐾 =
𝐸′

𝑢𝑟 

3(1 − 2𝜈′)
 Equation 125 

The unloading-reloading line 𝑢𝑟𝑙 𝐵 is governed by the unload-reload modulus 𝐸′
𝑢𝑟. A comparison of the 

initial response (𝐴𝐵) to the unloading response (𝐵𝐶) in the 𝑉 − 𝑝′ compression plane (Figure 13b) 

reveals a contradiction in the formulation of the Hyperbolic 𝐸 − 𝐵 model: the assumption of a constant 

bulk modulus causes the response in the 𝑉 − 𝑝′ compression plane to always be governed by 𝐸′
𝑖 or 

𝐸′
𝑢𝑟, even when the soil is undergoing primary loading (𝐴𝐵). Primary loading implies the development 

of plastic irrecoverable volume changes, but this is not properly reflected in the 𝑉 − 𝑝′ compression 

plane (Figure 13b), hence the initial response (𝐴𝐵) was not drawn on the isotropic normal compression 

line. Stated another way, the material model captures the 𝑞−𝜀𝑞 response for primary loading, while the 

𝑉 − 𝑝′ response is more consistent with linear elasticity. 

The soil shows a stiff elastic response on reloading from 𝐶 to 𝐷. The stress-strain curve 𝑞−𝜀𝑞 shows a 

sharp drop in stiffness when plastic strains start to develop as the soil yields at 𝐷 and it rejoins the 

continuous curve (Figure 13c). Similarly, the volume change from 𝐶 to 𝐷 is elastic, recoverable, and 

controlled entirely by 𝐸′
𝑢𝑟 (Figure 13b); and the volume-strain curve 𝑉−𝜀𝑞 (Figure 13d) shows a sharp 

break at 𝐷.  
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As further increments of drained compression are applied between 𝐵 and 𝐹, the deviator stress 

approaches the ultimate triaxial deviatoric shear strength 𝑞𝑓 and the modulus 𝐺𝑡 (Equation 118) tends 

towards zero. As such, the slope of the stress-strain curve 𝑞−𝜀𝑞 steadily decreases towards zero:  

𝛿𝑞

𝛿𝜀𝑞
𝑝 = 0 

Equation 126 

The gradient of the volume change curve as 𝐹 is approached (Figure 13d plotted in terms of volumetric 

strain) is given by Equation 27 and Equation 29 with 𝐺𝑡 = 0: 

𝛿𝜀𝑝
𝛿𝜀𝑞

=
3𝐺𝑡

𝐾′

𝛿𝑝′

𝛿𝑞
= 0 

Equation 127 

Plastic shearing continues at constant effective stress (𝛿𝑝′ = 0), and the loading can proceed no further 

unless the test were strain controlled. The curvature of the volume-strain curve 𝑉−𝜀𝑞 (Figure 13d) 

during primary loading (loading increments 𝐴𝐵 and 𝐷𝐹) is a by-product of the mathematical 

relationship between 𝑞 and 𝜀𝑞 (Equation 118), not the result of the mathematical description of the 

volumetric response for primary loading. 

5.8 Mohr-Coulomb Model 

5.8.1 Formulation 

The Mohr-Coulomb failure law, which is adopted as the yield function, can be written in terms of 

principal stresses as shown in Equation 128, where 𝑐′ and 𝜙′ are the effective stress cohesion and 

friction angle. A non-associated flow rule, Equation 129, is used for shear failure where 𝜓 is the angle of 

dilation. 

𝑓𝑠(𝜎) = (𝜎1 − 𝜎3) − (𝜎1 + 𝜎3)sin𝜙
′ − 2𝑐′𝑐𝑜𝑠𝜙′ Equation 128 

𝑔𝑠(𝜎) = (𝜎1 − 𝜎3) − (𝜎1 + 𝜎3)sin𝜓 Equation 129 

 

An optional tension criterion and plastic potential are: 

𝑓𝑡(𝜎) =  𝜎𝑡 − 𝜎3 = 0  Equation 130 

𝑔𝑡(𝜎) = −𝜎3 Equation 131 

where 𝜎𝑡 is the tensile strength. 

Figure 14 provides a view of the Mohr-Coulomb yield surface in 3D principal stress space for a 

compression positive sign convention (i.e. the adopted sign convention), which reveals a six-sided 

hexagonal pyramid. The failure surface has a hexagonal cross section in the deviatoric plane (Figure 15). 

The Mohr Coulomb yield function is fixed in stress space and does not change in size when plastic strains 
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are developing; consequently, the model is often described as elastic-perfectly plastic. The yield function 

is coincident with the failure surface, so reference to the yield surface implies failure surface and vice 

versa.  

 

Figure 14 View of Mohr-Coulomb failure surface in 3D principal stress space (compression positive sign convention). 
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Figure 15. Mohr-Coulomb yield surface in the deviatoric plane with the Drucker-Prager yield surface circumscribed at 𝜽 =
−𝝅/𝟔 (compression) and fully inscribed.  

The Mohr-Coulomb failure line in the 𝑝′ − 𝑞 stress plane is essentially a cross-section along the space 

diagonal of the hexagonal pyramid (Figure 14). The orientation of the cross-sectional plane is defined by 

the Lode angle in the deviatoric plane (Figure 2). The relationship between 𝑝′ and 𝑞 and the 

corresponding stress invariants in principal stress space is given in Section 3.2. Only one side of the 

hexagonal pyramid is shown Figure 16 because 𝑞 (Equation 15) is always positive.  

 

Figure 16. Mohr-Coulomb yield surface and plastic potential passing through the current stress state.  
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In addition to the six planes of the Mohr-Coulomb shear yield surface defined by Equation 128, Equation 

130 defines three planes which truncate the Mohr-Coulomb hexagon at the tensile strength of the 

material (Figure 17). The tension criterion is optional in this model. If the tensile strength option is not 

used then the Mohr-Coulomb criterion is only used in the stress corrections. A similar behaviour occurs 

if the specified tensile strength is beyond the Mohr-Coulomb apex (where the Mohr-Coulomb surface 

meets the 𝜎1 = 𝜎2  =  𝜎3 line). 

a)  

 

b)

 

Figure 17 The Mohr-Coulomb and tensile yield surfaces (yellow) in a) principal stress space and b) a section through the 𝝈𝟏 −
 𝝈𝟑 plane. 

The following should be noted: 

1. Application of the Mohr-Coulomb model to the simulation of an undrained response requires 

caution because the tendency for volume change is entirely elastic until the stress path 

intersects the yield surface. The pore-water pressure response can therefore be underestimated 

if the soil yields – transitions from elastic to elastic-plastic behaviour – prior to reaching failure. 

This being the case, and as already noted, the application of the Mohr-Coulomb model is 

generally understood to imply that the material is overconsolidated and that it will exhibit an 

abrupt transition from stiff (rigid) elastic to perfect plasticity behaviour when the stress state 

reaches the yield (i.e. failure) surface. 

2. A critical state condition is defined by two requirements: 𝛿𝜀𝑝
𝑝
/𝛿𝜀𝑞

𝑝
= 0 and 𝛿𝑞 𝛿𝜀𝑞

𝑝⁄ = 0. Clearly 

the first of these conditions is not met if the dilation angle 𝜓 > 0; that is, plastic volumetric 

strains continue to develop indefinitely with additional shearing. The Mohr-Coulomb 

Hardening/Softening model (Section 5.9) overcomes this deficiency.  

5.8.2 Material Parameters 

Table 6 summarizes the inputs required by the Mohr-Coulomb model. The elastic response is described 

by isotropic linear elasticity and therefore requires two independent elastic parameters: effective elastic 

modulus 𝐸′ and Poisson’s ratio 𝜈′.  
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Table 6. Parameters for the Mohr-Coulomb Model 

Parameter Symbol Unit 

Effective angle of shear resistance 𝜙′ ° 

Effective cohesion 𝑐′ 𝑘𝑃𝑎 

Angle of dilation 𝜓 ° 

Tensile strength (a positive value)  𝜎𝑡 𝑘𝑃𝑎 

Effective elastic stiffness 𝐸′ 𝑘𝑃𝑎 

Poisson’s ratio  𝜈′  

Coefficient of earth pressure for the overconsolidated state* 𝐾0
𝑜𝑐  

*The coefficient of earth pressure for the over-consolidated state 𝐾0
𝑜𝑐 is an optional parameter for establishing the initial 

stresses by means of a Gravity Activation analysis in combination with the 𝐾0 -procedure (Section 4.1.2).  

5.8.3 Conceptual Response 

Section 5.1 describes the approach being taken here to explore some of most important aspects of the 

Mohr-Coulomb model. As noted, the reader is directed to the example files and the literature for a more 

complete discourse on the assumptions and/or limitations of any particular constitutive model. A 

comparative study of the stress-strain response of the Hardening/Softening Mohr-Coulomb (Section 

5.9.3) is insightful because this constitutive model expands the basic functionality of the Mohr-Coulomb 

model.  

Figure 18 depicts the conceptualized simulated results of a conventional drained triaxial test on a 

dilative material (𝜓 > 0) represented by the Mohr-Coulomb model. It is assumed that the increments 

start from stress state 𝑃 lying on the 𝑝’ axis and at a point in the 𝑉 − 𝑝′ compression plane associated 

with url 𝑄. As noted in Section 5.7.3, the route by which the starting point (P) in Figure 13 was reached 

in both the 𝑝′ − 𝑞 effective stress plane and the 𝑉 − 𝑝′ compression plane has been left vague. The 

response of the Mohr-Coulomb model is independent of the initial state in the compression plane; 

consequently, it is rather paradoxical to display an unloading-reloading line and isotropic normal 

compression line in Figure 18b. Having stated this, the application of the Mohr-Coulomb model implies 

that the material will behave elastically until failure, at which point the behaviour transitions to perfect 

plasticity. This behaviour is generally associated with overconsolidated states, which implies an initial 

𝑉 − 𝑝′ state that is on an unload-reload line. This realization not does not preclude the use of the Mohr-

Coulomb model to approximate the response of lightly to normally compressed (and likely non-dilative) 

soil; however, Figure 18b stands as a reminder of the generally accepted implicit assumption of an 

overconsolidated state when applying the elastic-perfectly plastic Mohr-Coulomb model.  
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Figure 18. Conventional drained triaxial compression test on a soil described by the Mohr-Coulomb model: (a) 𝒑′ − 𝒒 
effective stress plane (with increments of plastic volumetric and deviatoric strain); (b) 𝑽 − 𝒑′ compression plane; (c) 𝒒 − 𝜺𝒒 

stress-strain plot; (d) 𝑽 − 𝜺𝒒 volume-strain plot. 

The stress increment 𝑃𝑄 represents changes in stress lying inside the yield locus. Point 𝑄 can be located 

in the compression plane by projection onto an unloading-reloading line url 𝑄 (Figure 18a). The change 

in volume from 𝑃 to 𝑄 is purely elastic and associated with the a change in mean effective stress 𝛿𝑝′. 

From the specific volume 𝑉 of the soil at 𝑄, the recoverable change in volume can be converted to an 

elastic volumetric strain:  

𝛿𝜀𝑝𝑃𝑄
𝑒 =

−𝛿𝑉𝑃𝑄
𝑒

𝑉𝑃
 

Equation 132 

allowing the elastic bulk modulus to be calculated: 

𝐾′ =
𝛿𝑝′

𝑃𝑄

𝛿𝜀𝑝𝑃𝑄
𝑒  

Equation 133 

The result obtained from the simulated result via Equation 133 is equivalent to that obtained more 

directly from Equation 28 using 𝐸′ and 𝜈′. The slope of the dotted unloading-reloading line between 𝑃 

and 𝑄 is uncharacteristically linear because of the assumption of isotropic linear elasticity.  

The yield locus remains fixed in size as further increments 𝑄𝑇 of drained compression are applied 

(Figure 18a). Perfect plasticity is achieved at 𝑄 and points 𝑄 and 𝑇 lie in the same position on the yield 

surface (Figure 18a). From point 𝑄 onwards, the stress ratio 𝜂 = 𝑞 𝑝′⁄  is constant and the slope of the 
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stress-strain curve 𝑞 − 𝜀𝑞 abruptly reduces to zero (Equation 126). Plastic shearing continues at constant 

effective stress (𝛿𝑝′ = 0), and the loading can proceed no further unless the test was strain controlled. 

Similarly, point 𝑄 marks an abrupt inflection point in the 𝑉 − 𝑝′ compression plane (Figure 18b) and 𝑉 −

𝜀𝑞 volume-strain plot (Figure 18d). At 𝑄, the plastic strain increment vector points to the left, indicating 

that continued increases in shear strain are going to be associated with negative plastic volumetric 

strains; that is, plastic volumetric expansion. The changing specific volume as the shear strain increases 

is controlled entirely by the irrecoverable plastic volumetric strain because the elastic contribution is 

zero (i.e. 𝛿𝑝′ = 0). The ratio of plastic shear strain to plastic volumetric strain remains constant because 

the outward normal to the plastic potential does not evolve with further loading (Figure 18a). Recall that 

the plastic potential is of fixed size but can move to pass through the current stress state (Section 5.8.1). 

The relative magnitudes of the plastic volumetric strain and plastic shear strain 𝛿𝜀𝑝
𝑝
/𝛿𝜀𝑞

𝑝
 are governed 

entirely by the dilation angle.  

5.9 Hardening/Softening Mohr-Coulomb Model 
One of the drawbacks of the Mohr-Coulomb model (Section 5.8) is that it simulates continued dilation 

upon yielding. In reality, soil may dilate initially when a stress path encounters the yield surface, but will 

eventually reach a constant volume condition at larger strains. Furthermore, dilative soil often exhibits a 

rapid increase in shear stress up to a peak value over a small change in shear strain, and then a decrease 

in shear stress with increasing shear strain (i.e., strain softening), ultimately reaching a constant value 

referred to as the critical state (Figure 19a). The critical state shear stress corresponds to no further 

volume change with continued shearing (Figure 19b). Figure 19b depicts the calculation of the peak 

dilation angle from the results of a shear box test. Naturally other expressions exist for different testing 

procedures, such as that pertaining to the use of Mohr’s circle of plastic strains from a drained triaxial 

compression tests.  
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Figure 19. Response of soils to direct shearing. 

5.9.1 Formulation 

Consider a non-linear peak failure envelop corresponding to a dilative soil (Figure 20). Coulomb’s failure 

law can be written as: 

𝜏𝑓 = 𝑐′ + 𝜎′
𝑛 tan(𝜙′

𝑚) Equation 134 

where the mobilized effective friction angle is given by: 

𝜙′
𝑚 = 𝜙′

𝑐𝑠 + 𝜓𝑚 Equation 135 

where 𝜙′
𝑐𝑠 is the critical state friction angle and 𝜓𝑚 is the mobilized dilation angle. Equation 135 

becomes a stress-dilatancy relationship linking the mobilized friction angle 𝜙′
𝑚 with an angle of dilation 

𝜓 and an assumed constant critical state friction angle 𝜙′
𝑐𝑠 (Wood, 1990). The relationship between 

𝜙′
𝑚 and 𝜓𝑚 has been deliberately left vague because the link between the two properties would be 
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revealed by means of lab testing. By way of contrast, the Hardening Soil model (Schanz et al. 1999) 

prescribes a stress-dilatancy relation that links the mobilized friction angle 𝜙′
𝑚 to the mobilized dilation 

angle 𝜓𝑚 (Rowe 1962, 1971).  

 

Figure 20. Effects of dilation on Coulomb’s peak strength failure envelope.  

Figure 20 can be viewed as compilation of test results – such as those shown in in Figure 19 – that 

depicts the role of dilation in effecting the shear strength of soil along with the suppression of dilative 

behaviour with increasing normal stress. The results of a specific test (e.g. Figure 19) could be used to 

determine the evolution of the dilation angle 𝜓𝑚 with accumulated deviatoric plastic strain at a specific 

effective normal stress (Taylor, 1948). Equation 135 could then be used to deduce the relationship 

between 𝜙′
𝑚 and accumulated deviatoric plastic strain. Various testing procedures (e.g. conventional 

triaxial compression), which are described in detail in a plethora of testing standards, textbooks, and 

journal articles, offer more sophisticated data interpretation strategies than a direct application of 

Equation 135.  

Regardless of the testing and data interpretation procedures, the properties 𝑐′, 𝜙′
𝑚, 𝜓𝑚 can all be 

made to vary with accumulated plastic deviatoric strain 𝜀𝑞
𝑝

 defined by Equation 19 via Equation 17 or a 

simplified variant of Equation 17 for a particular testing procedure (e.g. Equation 49 for drained triaxial 

compression). It is important to note that the accumulated deviatoric strain quantity 𝜀𝑞
𝑝

 comprises only 

the plastic part; that is, the elastic part is subtracted from the (total) accumulated deviatoric strain at 

each stage of the test: 

𝜀𝑞
𝑝

= 𝜀𝑞 − 𝜀𝑞
𝑒 Equation 136 

 

Again, the appropriate resources should be consulted to determine how to isolate the elastic 

component from the accumulated deviatoric strain at each stage of a test. In the case of a triaxial test, a 

simplified procedure might involve a single unloading-reloading stage to obtain the accumulated 

deviatoric elastic strain. Wood (1990) notes that for many materials, the contribution of elastic strains 

may be negligible when yielding is occurring, and the difference between a plastic strain increment and 

a total stain increment ratio may be small. Wood (1990) does, however, suggest caution, particularly if 
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the test is undrained, because the total stain increment 𝛿𝜀𝑝 𝛿𝜀𝑞⁄ = 0 as the volume is constant, but 

the condition of constant volume requires the plastic strain increment 𝛿𝜀𝑝
𝑝

𝛿𝜀𝑞
𝑝

⁄ ≠ 0.  

Figure 21a shows an example with three distinct zones of behaviour described by linearized variations in 

the properties. The mobilized values of 𝑐′, 𝜙′, 𝜓 increase from their initial values (subscript 𝑖) linearly in 

zone 1 up to the peak values (subscript 𝑝), remain constant and equal to the peak values through zone 

2, and finally decrease in zone 3 to a residual value (subscript 𝑟) or to zero in the case of 𝜓. The three 

zones are associated with hardening (i.e. expansion of the purely elastic zone define by the yield 

surface), perfect plasticity, and softening (i.e. contraction of the yield surface), respectively. Figure 21b 

shows only two distinct zones of behaviour associated with hardening and perfect plasticity, 

respectively, assuming a constant cohesion. The yield locus initiates on the 𝑝′ axis in the 𝑝′ − 𝑞 stress 

plane (𝜙′
𝑖 = 0), which means that plastic straining initiates immediately with positive shear strains. The 

dilation angle is zero (i.e. zero plastic volumetric straining) until the mobilized friction angle reaches the 

critical state value, at which point the dilation angle increases steadily with the mobilized friction angle 

to the peak values. This type of behaviour is characteristic of the Hardening Soil model (Schanz et al. 

1999).  

 

Figure 21. Examples of variations of 𝒄′, 𝝓′, 𝝍 with accumulated deviatoric plastic strain: a) hardening, perfect plasticity, and 
softening; b) hardening followed by perfect plasticity  

The yield function of the H/S Mohr-Coulomb model retains its hexagonal cross section in the deviatoric 

plane (Figure 15); however, the slope of the yield locus in the 𝑝′ − 𝑞 stress plane (Figure 16) changes in 

accordance with the mobilized friction angle 𝜙′
𝑚. In addition, the hexagonal pyramid slides along the 

space diagonal in accordance with the variations of cohesion 𝑐′. The plastic potential, which is also a 

hexagonal pyramid in 3D principal stress space, changes in a similar manner, but its slope in the 𝑝′ − 𝑞 

stress plane changes in accordance with the mobilized dilation angle 𝜓𝑚. The following should be noted: 

1. The ability to specify 𝑐′, 𝜙′, 𝜓, and 𝜎𝑡 as functions of the accumulated deviatoric plastic strain 

allows for a range of behaviours to be simulated by the H/S Mohr-Coulomb model. For example, 

the conventional elastic-perfectly plastic Mohr-Coulomb model (Section 5.8) is recovered if 𝑐′, 

𝜙′, and 𝜓 are constant functions of accumulated deviatoric plastic strain 𝜀𝑞
𝑝

. Alternatively, the 
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functions could be defined to simulate hardening followed by perfectly plasticity (zones 1 and 2 

in Figure 21b), or softening-only behavior (Section 5.9.3) and so on.  

2. By way of contrast, and as indicated by the material model name, the Hardening Soil model 

(Schanz et al. 1999) cannot simulate a reduction in strength from peak to critical state (or a 

residual state) that is associated with plastic softening.  

3. The H/S Mohr-Coulomb and conventional Mohr-Coulomb model do not prescribe a surface 

bounding the elastic zone along the space diagonal in principal stress space. The Hardening Soil 

model (Schanz et al. 1999) addresses this deficiency via introduction of a ‘cap’ yield surface on 

the hexagonal cone.  

5.9.2 Material Parameters 

The elastic response is described by isotropic linear elasticity and therefore requires two independent 

elastic parameters: effective elastic modulus 𝐸′ and Poisson’s ratio 𝜈′.  

Table 7. Parameters for the Hardening/Softening Mohr-Coulomb Model 

Parameter Symbol Unit 

Effective angle of shear resistance as a function of 𝜀𝑞
𝑝

 𝜙′ ° 

Effective cohesion as a function of 𝜀𝑞
𝑝

 𝑐′ 𝑘𝑃𝑎 

Angle of dilation as a function of 𝜀𝑞
𝑝

 𝜓 ° 

Tensile strength (a positive value) as a function of |𝜀3
𝑝
| 𝜎𝑡 𝑘𝑃𝑎 

Effective elastic stiffness 𝐸′ 𝑘𝑃𝑎 

Poisson’s ratio  𝜈′  

Coefficient of earth pressure for the overconsolidated state* 𝐾0
𝑜𝑐  

*The coefficient of earth pressure for the over-consolidated state 𝐾0
𝑜𝑐 is an optional parameter for establishing the initial 

stresses by means of a Gravity Activation analysis in combination with the 𝐾0 -procedure (Section 4.1.2).  

5.9.3 Conceptual Response 

Section 5.1 describes the approach being taken here to explore some of most important aspects of the 

H/S Mohr-Coulomb model. As noted, the reader is directed to the example files and the literature for a 

more complete discourse on the assumptions and/or limitations of any constitutive model. The 

comparable explorations of the Hyperbolic 𝐸 − 𝐵 model (Section 5.7.3) and Mohr-Coulomb model 

(Section 5.8.3) should be consulted before reading this section in order to gain additional insights into 

the stress-strain response of this model.  

Figure 22 depicts the conceptualized simulated results of a conventional drained triaxial test on a 

material represented by the H/S Mohr-Coulomb model. The parameters 𝜙′ and 𝜓 are assumed to vary 

with accumulated deviatoric plastic strain (Figure 23) while the effective cohesion 𝑐′ was assumed zero. 

As with the drained triaxial test discussed in Section 5.8.3, it is assumed that the increments start from 

stress state 𝑃 lying on the 𝑝’ axis and at a point in the 𝑉 − 𝑝′ compression plane associated with url 𝑄. 

The apparent contradiction of displaying an unloading-reloading line and isotropic normal compression 

line in Figure 22b was discussed above.  
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Figure 22. Conventional drained triaxial compression test on a soil described by the H/S Mohr-Coulomb model: 𝒑′ − 𝒒 
effective stress plane (with increments of plastic volumetric and deviatoric strain); (b) 𝑽 − 𝒑′ compression plane; (c) 𝒒 − 𝜺𝒒 

stress-strain plot; (d) 𝑽 − 𝜺𝒒 volume-strain plot. 

 

Figure 23. Variation of 𝝓′, 𝝍 with accumulated deviatoric plastic strain for the triaxial compression test shown in Figure 22. 

The drained compression from 𝑃 to 𝑄 represents changes in stress lying inside the yield locus and are 

consequently purely elastic processes (Figure 22a). The soil exhibits a stiff elastic response on drained 

compression from 𝑃 to 𝑄 that is clearly reflected in the 𝑉 − 𝑝′ compression plane (Figure 22b), the 

stress-strain curve 𝑞 − 𝜀𝑞 (Figure 22c), and volume-strain curve 𝑉 − 𝜀𝑞 (Figure 22d). The simulated 

result thus far is in exact agreement with that presented in Section 5.8.3. Both 𝑃 and 𝑄 lie on the 

unloading-reloading line url 𝑃 and the total deviatoric strain comprises only an elastic component 𝜀𝑞 =

𝜀𝑞
𝑒.  

The peak friction angle 𝜙′
𝑝 (Figure 23a) controls the initial size of the yield locus yl 𝑄. The drained 

compression from 𝑃 to 𝑄 mobilized the maximum frictional resistance (𝜙′
𝑚 = 𝜙′

𝑝). At 𝑄, the plastic 

strain increment vector on the plastic potential pp 𝑄 points to the left, indicating that that if a continued 

increase in shear strain is to occur, with plastic shear strains of the same sign as the preceding elastic 
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shear strains (i.e. positive), then negative plastic volumetric strain must occur; that is, plastic volumetric 

expansion (Wood, 1990).  

The development of deviatoric plastic strain 𝜀𝑞
𝑝

 is associated with a reduction in the effective friction 

angle 𝜙′ (Figure 23), which requires a contraction in the yield surface. As a result, the effective stress 

path must retreat back towards 𝑃, otherwise the stress state would exist in illegal stress space. The 

progress of the test is deduced in the compression plane (Figure 22b) by projecting the points 𝑅, 𝑆, and 

𝑇 in the stress plane (Figure 22a) from their yield loci yl 𝑅, yl 𝑆, and yl 𝑇 downwards to the simulated 

specific volume.  

As the yield locus contracts in accordance with 𝜙′ (Figure 23a), the plastic potential moves to pass 

through the current stress state and its slope evolves in accordance with the functional relationship in 

Figure 23b. The direction of the plastic strain increment vector gradually approaches the vertical until at 

𝑇, plastic shear deformation can continue without plastic change in volume. The initial rise in 𝑞 and 

decrease in volume (𝑃𝑄) was followed by a drop in 𝑞 and increase in 𝑉 towards the limiting values at 𝑇. 

The sharpness of the break in the stress-strain curve 𝑞 − 𝜀𝑞 (Figure 22c) and volume-strain curve 𝑉 − 𝜀𝑞 

(Figure 22d) at 𝑄 depends on the functional relationship between 𝑐′, 𝜙′, 𝜓 and the deviatoric plastic 

strain 𝜀𝑞
𝑝

.  

5.10 Hardening Soil Model 
The Hardening Soil Model (Schanz et al. 1999) shares two key attributes with the H/S Mohr-Coulomb 

model described in Section 5.9: 1) it can simulate an increase in shear strength up to a peak value over a 

limited range of shear strain (i.e. shear hardening), ultimately reaching a constant, critical state, value; 

and, 2) it can simulate an evolving angle of dilation with shear straining. The Hardening Soil Model also 

differs from H/S Mohr-Coulomb model (Section 5.9) in a number of key respects: 1) it cannot simulate 

softening; 2) it can simulate plastic straining for stress paths that are predominately along the space 

diagonal in principal stress space (i.e. compression hardening); and, 3) it can simulate non-linear elastic 

behaviour.  

The Hardening Soil model makes a distinction between shear hardening and compression hardening by 

means of two unique yield surfaces (Figure 24). These surfaces enclose the elastic domain. Consider an 

initial stress state 𝑃 that is on both yield surfaces; that is, at the intersection of the surfaces in Figure 24. 

The behaviour of the soil will depend on the direction of the stress path. A stress path directed below 

both yield surface into zone 1 produces nonlinear elastic strains. A shear path directed into zone 2 

produces elastic-plastic behaviour with the cap yield surface active and expanding (i.e. hardening). The 

shear yield surface remains stationary. A stress path directed into zone 3 produces elastic-plastic 

behaviour and expands both yield surfaces simultaneously. Lastly, a stress path directed into zone 4 

activates and expands the shear yield surface while the cap surface remains stationary. The name of the 

constitutive model portends the increasing shear strength associated with hardening; that is, expansion 

of the purely elastic zone defined by the shear and cap yield surfaces.  
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Figure 24. Yield surfaces for the Hardening Soil model. 

5.10.1 Formulation 

A key ingredient of the mathematical formulation of the Hardening Soil model is a stress dependent 

stiffness modulus, denoted 𝐸′
50, that can be measured in a drained triaxial test. Consider a plot of 

triaxial deviator stress 𝑞 = 𝜎′
1 − 𝜎′

3 versus axial strain 𝜀𝑎 for a drained triaxial test of a normally 

compressed specimen (Figure 25). The primary loading stress-strain path can be described by the 

hyperbolic relationship given by Equation 113, which requires knowledge of an initial small strain 

tangent stiffness quantity 𝐸𝑖, the ultimate triaxial deviatoric shear strength 𝑞𝑓 (Equation 114), and 

asymptotic value of the triaxial shear strength 𝑞𝑎 (Equation 115).  

 

Figure 25. Simulation of a conventional drained triaxial test using the Hardening Soil model.  

The stiffness 𝐸𝑖  is a small strain tangent slope that is generally difficult to measure (Figure 25). A more 

easily measured value is the secant stiffness 𝐸′
50, corresponding to a line passing through the 𝑞 − 𝜀1 

stress-strain data at a deviator stress 𝑞 = 0.5(𝑞𝑓). The stiffness 𝐸𝑖  is related to 𝐸′
50 by: 

𝑞

𝑝 𝑐 tan𝜙 ⁄

𝑦𝑙 1 𝑦𝑙 2
1

2

3

4 𝑃
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𝐸′
𝑖 =

2𝐸′
50

2 − 𝑅𝑓
 Equation 137 

 

where 𝐸′
50 is given:  

𝐸′
50 = 𝐸′

50
𝑟𝑒𝑓

(
𝑐′ cos𝜙′ + 𝜎′

3 sin𝜙′

𝑐′ cos𝜙′ + 𝑝𝑟𝑒𝑓 sin𝜙′)

𝑚

 Equation 138 

 

and 𝜎′
3 is the effective minor principal stress, which is equal to the confining stress in a triaxial test, 

𝑝𝑟𝑒𝑓 a reference confining stress, and 𝑚 an exponent that controls the amount of stress dependency. 

The reference stiffness 𝐸′
50
𝑟𝑒𝑓

 is generally measured at a reference confining stress 𝑝𝑟𝑒𝑓 of 100 kPa. A 

logarithmic 𝑞 − 𝜀1 relationship, typical of soft clays, is obtained if 𝑚 = 1. Norwegian sands and silts are 

represented by 0.5 <  𝑚 <  1.0 (Janbu, 1963 and von Soos, 1990).  

It is important to note that the stiffness quantities 𝐸𝑖  and 𝐸′
50 are not elastic properties. The elastic 

response in zone 1 (Figure 24) is described by isotropic elasticity and therefore requires two 

independent elastic parameters. The Hardening soil model adopts a stress dependent effective elastic 

modulus determined from an unloading-reloading stress path, 𝐸′
𝑢𝑟, and a constant Poisson’s ratio, 𝜈′

𝑢𝑟, 

that is also specific to unloading-reloading (Figure 25). The expression for the modulus 𝐸′
𝑢𝑟 has the 

same form as Equation 138:  

𝐸′
𝑢𝑟 = 𝐸′

𝑢𝑟
𝑟𝑒𝑓

(
𝑐′ cos𝜙′ + 𝜎′

3 sin𝜙′

𝑐′ cos𝜙′ + 𝑝𝑟𝑒𝑓 sin𝜙′)

𝑚

 Equation 139 

 

The reference stiffness 𝐸′
𝑢𝑟
𝑟𝑒𝑓

 is measured at a reference confining stress 𝑝𝑟𝑒𝑓 (e.g. 100 kPa). Section 

5.10.2 presents some typical relationships between 𝐸𝑖  and 𝐸′
𝑢𝑟. 

5.10.1.1 Shear Hardening 

The Hardening Soil model adopts a shear yield function that comprises the hyperbolic relationship 

(Equation 113), which in turn comprises the Mohr-Coulomb failure law (Equation 114 and Equation 

115): 

𝐹1({𝜎
′}, {𝑘1}) = �̅�1 − 𝛾𝑝 Equation 140 

 

where �̅�1 is given by: 

�̅�1 =
2

𝐸𝑖

𝑞

1 −
𝑞
𝑞𝑎

−
2𝑞

𝐸𝑢𝑟
 Equation 141 
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and 𝛾𝑝 is a frictional hardening parameter that is calculated from the accumulated plastic strain 

components as: 

𝛾𝑝 = 2𝜀1
𝑝
− 𝜀𝑝

𝑝
 Equation 142 

 

The yield surface retains a hexagonal cross section in the deviatoric plane (Figure 15) but can be slightly 

curved in the 𝑝′ − 𝑞 stress plane (Figure 26). The nonlinearity of any particular yield loci in the 𝑞 − 𝑝′ 

stress space arises from stress dependency of the stiffness properties (Equation 138 and Equation 139), 

which is controlled by the exponent 𝑚. Straight lines are obtained if 𝑚 = 1 whereas the curvature is 

noticeable if 𝑚 = 0.5, which is typical for stiff soils (Figure 26). As failure is approached, the yield 

function theoretically reverts to that of Mohr-Coulomb, becoming linear in the 𝑝′ − 𝑞 stress plane even 

if 𝑚 ≪ 1.0 (Figure 26). 

 

 

Figure 26. Successive yield loci for various values of the hardening parameter 𝜸𝒑 and 𝒎 = 𝟎. 𝟓.  

The current size of the shear yield function is controlled by a measure of accumulated plastic shear 

strain 𝛾𝑝 (𝛾𝑝 ≈ 2𝜀𝑞
𝑝

), hence the successive yield loci in Figure 26 correspond to increasing values of 𝛾𝑝. 

For a stress state on a particular yield locus in Figure 26, the mobilized friction angle 𝜙′
𝑚 can be 

calculated as (Rowe, 1962):  

sin𝜙′
𝑚 =

𝜎′
1 − 𝜎′

3

𝜎′
1 + 𝜎′

3 − 2𝑐′ cot𝜙′
 Equation 143 

 

which reveals that 𝛾𝑝 is implicitly linked to a mobilized friction angle 𝜙′
𝑚, which is not unlike the 
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accumulated plastic deviatoric strain 𝜀𝑞
𝑝

 being explicitly linked to the mobilized friction angle 𝜙′
𝑚 in the 

H/S Mohr-Coulomb model (Figure 21b).  

The plastic potential associated with shear yield surface is given by: 

𝑃1({𝜎
′}, {𝑚1}) =

(𝜎′
1 − 𝜎′

3)

2
−

(𝜎′
1 + 𝜎′

3)

2
sin𝜓𝑚 Equation 144 

 

where 𝜓𝑚 is the mobilized dilation angle. The expression for the plastic potential is the same as that of 

the Mohr-Coulomb model, which is a hexagonal pyramid in 3D principal stress space and a straight line 

in the 𝑝′ − 𝑞 stress plane (Figure 16). The dilation angle 𝜓 controls the slope of the plastic potential in 

the 𝑝′ − 𝑞 stress plane (𝑔𝑝𝑝(𝜃) in Figure 16), which controls the relative magnitude of dilative 

(expansive) or contractive (positive) plastic volumetric strain when the soil is yielded. The plastic 

potential adopted by the Hardening Soil model produces plastic strain increments that imply:  

𝛿𝜀𝑝
𝑝

= sin𝜓𝑚 𝛿𝛾𝑝 Equation 145 

 

when plastic deformations are occurring. The actual magnitude of the plastic strain increments is 

calculated from a flow rule of the form shown Equation 35.  

The Hardening Soil model adopts the relationships between 𝜓𝑚 and the mobilized friction angle 𝜙′
𝑚 

(Equation 143) that were established by Schanz and Vermeer (1996) based on the stress-dilatancy 

theory proposed by Rowe (1962). For a user specified peak friction angle, 𝜙′, and peak dilation angle, 𝜓, 

the mobilized dilation angle is given by:  

sin𝜙′
𝑚 < (3 4⁄ ) sin𝜙′ 𝜓𝑚 = 0 Equation 146 

sin𝜙′
𝑚 ≥ (3 4⁄ ) sin𝜙′ ;  𝜓 > 0 sin𝜓𝑚 = max(

sin𝜙′
𝑚 − sin𝜙′

𝑐𝑠

1 − sin𝜙′
𝑚 sin𝜙′

𝑐𝑠

 , 0) Equation 147 

sin𝜙′
𝑚 ≥ (3 4⁄ ) sin𝜙′ ;  𝜓 ≤ 0 𝜓𝑚 = 𝜓 Equation 148 

  

where 𝜙′
𝑐𝑠 is the critical state friction angle given by: 

sin𝜙′
𝑐𝑠 =

sin𝜙′ − sin𝜓

1 − sin𝜙′ sin𝜓
 Equation 149 

 

Notice that the maximum operator (max) ensures that the mobilized dilation angle (𝜓𝑚) remains at zero 

until the mobilized friction angle 𝜙′
𝑚 exceeds the critical state friction angle 𝜙′

𝑐𝑠 even if sin𝜙′
𝑚 ≥

(3 4⁄ ) sin𝜙′. The rules ensure that compression occurs for small stress ratios, characterized by 𝜙′
𝑚 <

𝜙′
𝑐𝑠, and that dilation occurs for high stress ratios characterized by 𝜙′

𝑚 > 𝜙′
𝑐𝑠. Figure 27 illustrates a 
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stress-dilatancy relationship generated by Equation 147 for assumed peak strength properties. The 

sharp break in the functional relationship occurs at the critical state friction angle 𝜙′
𝑐𝑠. The Hardening 

Soil model implicitly links 𝜓𝑚 to 𝜙′
𝑚 (Equation 147), which is in turn linked to the current stress state 

and peak strength properties (Equation 143), which is in turn linked to the accumulated plastic shear 

strain 𝛾𝑝 ≈ 2𝜀𝑞
𝑝

. The implicit relationships could therefore be elucidated by plotting a graph of the 

simulated 𝜓𝑚 versus 𝛾𝑝 (or 𝜀𝑞
𝑝

; refer to Section 5.10.3). Again, this is not unlike how the H/S Mohr-

Coulomb model explicitly links the current slope of the plastic potential, characterized by 𝜓𝑚, to the 

accumulated plastic deviatoric strain 𝜀𝑞
𝑝

 via a user defined function (Figure 21b).  

 

Figure 27. Mobilized dilation angle 𝝍𝒎 versus mobilized friction angle 𝝓′
𝒎 for peak friction and dilation angles of 𝟑𝟎° and 

𝟖°, respectively, and cohesion of 8 kPa.  

The following should be noted: 

1. As indicated by the material model name, the Hardening Soil model cannot simulate a reduction 

in strength from peak to critical state (or a residual state) that is associated with plastic 

softening.  

2. The mobilized dilation angle (Equation 147) remains at the peak value 𝜓𝑚 = 𝜓 once the 

mobilized friction angle 𝜙′
𝑚 = 𝜙′, implying that plastic volumetric expansion will continue 

indefinitely with continued shearing. In actuality, the mobilized dilation angle should decrease 

to zero with continued shearing past the peak, causing the volumetric expansion to cease and 

the void ratio to reach a constant critical state value. Although the evolution of the dilation 

angle cannot be simulated post peak, the mobilized dilation angle can be toggled to 𝜓𝑚 = 0 if 

the 𝑒 ≥ 𝑒𝑚𝑎𝑥, where the subscript 𝑚𝑎𝑥 indicates the maximum. The specification of a 

maximum void ratio 𝑒𝑚𝑎𝑥 is referred to as a dilatancy cut-off.  
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5.10.1.2 Compression Hardening 

The plastic compression strains, which are generated by compression (𝑝′) dominant stress paths (zone 2 

in Figure 24), are governed by another yield surface that caps the open end of the shear hardening 

surface (Cudny and Truty, 2020): 

𝐹2({𝜎
′}, {𝑘2}) =

𝑞2

𝑀2𝑔2(𝜃)
+ 𝑝′2 − 𝑝𝑝

2 Equation 150 

where 𝑞 and 𝑝′ are generalized stress invariants (Section 3.2): 

𝑔(𝜃) = (
1 − 𝛽 sin(3𝜃)

1 + 𝛽
)

𝑛

 Equation 151 

𝛽 =
1 − 𝑘

1
𝑛

1 + 𝑘
1
𝑛

 Equation 152 

𝑘 =
3 − sin𝜙′

3 + sin𝜙′
 Equation 153 

 

and 𝑀 is a secondary model parameter that is calculated from the earth pressure coefficient 𝐾0
𝑛𝑐 that is 

given by Jaky’s relationship:  

𝐾0
𝑛𝑐 = 1 − sin𝜙′ Equation 154 

 

In principal stress space, the can be described as a rounded hexagonal ellipsoid (Figure 28). The cap yield 

locus is revealed as an ellipse in the 𝑝′ − 𝑞 stress plane for any given Lode angle (Figure 24) and as a 

rounded hexagon in the deviatoric plane that wraps the original function proposed by Schanz and 

Vermeer (1996; Figure 29). 
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Figure 28. Representation of the complete yield surface of the Hardening Soil model in principal stress space for a soil 
without cohesion.  

 

Figure 29. Reformulated and original cap yield surfaces in the deviatoric plane.   
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The plastic potential associated with the cap takes the form: 

𝑃2({𝜎
′}, {𝑘2}) =

𝑞2

𝑀2
+ 𝑝′2 Equation 155 

 

The expression for the compression plastic potential (Equation 155) differs from the yield function 

Equation 150); an assumption referred to as non-associated plasticity. The Hardening Soil model is 

formulated on the assumption that the compression yield loci expand at constant shape, with the size 

being controlled by the tip stress 𝑝′
𝑝, and that expansion of the yield loci – that is, the hardening of the 

soil – is linked with normal compression of the soil. The compression plastic potential produces plastic 

volumetric strain increments that can be calculated over a finite change in 𝑝′
𝑝 as: 

𝛿𝜀𝑝
𝑝

=
1

𝐻
𝛿𝑝′

𝑝 Equation 156 

 

where 𝐻 is referred to as the hardening modulus: 

𝐻 = (
𝐾′

𝑐

𝐾′
𝑠 − 𝐾′

𝑐
)𝐾′

𝑠 Equation 157 

 

where 𝐾′
𝑐 and 𝐾′

𝑠 are the bulk moduli in isotropic normal compression and swelling, respectively. The 

bulk modulus in isotropic swelling is given by: 

𝐾′
𝑠 = 𝐾′

𝑠
𝑟𝑒𝑓

(
𝑐′ cot 𝜙′ + 𝑝′

0

𝑐′ cot𝜙′ + 𝑝𝑟𝑒𝑓)

𝑚

 Equation 158 

 

The reference bulk modulus 𝐾′
𝑠
𝑟𝑒𝑓

 is calculated as: 

𝐾′
𝑠
𝑟𝑒𝑓

=
𝐸′

𝑢𝑟
𝑟𝑒𝑓

3(1 − 2𝜈′
𝑢𝑟)

 Equation 159 

 

The ratio of the bulk moduli 𝐾′
𝑠 𝐾′

𝑐⁄  for isotropic loading conditions can be approximated by the 

expression: 

𝐾′
𝑠

𝐾′
𝑐
≈

𝐸′
𝑢𝑟
𝑟𝑒𝑓

𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

𝐾0
𝑛𝑐

(1 + 2𝐾0
𝑛𝑐)(1 − 2𝜈′

𝑢𝑟)
 Equation 160 

 

where 𝐾0
𝑛𝑐 is the coefficient of earth pressure for the normally compressed state and 𝐸′

𝑜𝑒𝑑
𝑟𝑒𝑓

 is a tangent 

stiffness obtained from an oedometer test at 𝜎′
1 = 𝜎′

𝑣 = 𝑝𝑟𝑒𝑓; that is, the reference pressure for an 
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oedometer test is the vertical effective stress instead of the horizontal confining stress used for a triaxial 

tests.   

 

Figure 30. Reference tangent stiffness 𝑬′
𝒐𝒆𝒅
𝒓𝒆𝒇

 at the reference stress 𝝈′
𝟏 = 𝝈′

𝒗 = 𝒑𝒓𝒆𝒇.   

The following should be noted: 

1. As noted in the synopsis (Section 5.10), a stress path directed into zone 3 (Figure 24) produces 

elastic-plastic behaviour and expands both the shear and cap yield surfaces simultaneously. The 

elastic-plastic response is governed by the shear yield surface in this scenario. The elastic-plastic 

response is only controlled entirely by the cap yield surface if the stress path is not engaging the 

shear yield surface, which would require simulation of a stress path that expands the shear and 

cap yield surfaces, then retreats within the expanded elastic zone, and finally re-engages only 

the cap yield surface when reloaded in a compression dominated manner (zone 3; Figure 24).  

2. The shear yield surface will always be engaged at the onset of loading regardless of the OCR 

state and initial stress conditions unless the stress history to create OCR conditions was 

modelled. Even if an initial stress analysis is conducted, Equation 143 would be used to compute 

the initial mobilized friction angle. The only way to create an initial stress state inside both the 

shear and cap yield surfaces would be to model stress history.  

5.10.2 Material Parameters 

Table 8 provides a summary of the required parameters. The elastic response in zone 1 (Figure 24) is 

described by isotropic elasticity and therefore requires two independent elastic parameters. The 

Hardening soil model adopts a stress dependent effective elastic modulus determined from an 

unloading-reloading stress path, 𝐸′
𝑢𝑟, and a constant Poisson’s ratio, 𝜈′

𝑢𝑟, that is specific to unloading-
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reloading (Figure 25). The reference stiffness 𝐸′
𝑢𝑟
𝑟𝑒𝑓

 is measured at a reference confining stress 𝑝𝑟𝑒𝑓 of 

100 kPa.  

Table 8. Parameters for the Hardening Soil Model 

Parameter Symbol Unit 

Effective angle of shear resistance 𝜙′ ° 

Effective cohesion 𝑐′ 𝑘𝑃𝑎 

Angle of dilation 𝜓 ° 

Reference unload-reload stiffness (via drained triaxial) 𝐸′
𝑢𝑟
𝑟𝑒𝑓

 𝑘𝑃𝑎 

Reference secant stiffness (via drained triaxial); 𝑞 = 0.5(𝑞𝑓) 𝐸′
50
𝑟𝑒𝑓

 𝑘𝑃𝑎 

Reference tangent stiffness in primary oedometer loading 𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

 𝑘𝑃𝑎 

Unload-reload Poisson’s ratio  𝜈′
𝑢𝑟  

Exponent controlling stiffness stress dependency 𝑚  

Reference confining stress for stress dependent stiffness 
calculations 

𝑝𝑟𝑒𝑓 𝑘𝑃𝑎 

Failure ratio 𝑞𝑓 𝑞𝑎⁄  𝑅𝑓  

Isotropic over-consolidation ratio 𝑂𝐶𝑅 = 𝑝𝑝,𝑚𝑎𝑥
′ 𝑝𝑝,𝑖

′⁄   

Coefficient of earth pressure for the normally compressed state 𝐾0
𝑛𝑐  

Coefficient of earth pressure for the overconsolidated state* 𝐾0
𝑜𝑐  

Initial void ratio 𝑒  

Maximum void ratio (dilatancy cut-off) 𝑒𝑐𝑠  

*The coefficient of earth pressure for the over-consolidated state 𝐾0
𝑜𝑐 is an optional parameter for establishing the initial 

stresses by means of a Gravity Activation analysis in combination with the 𝐾0 -procedure (Section 4.1.2).  

Table 9 provides a number of common relationships to assist with conversion between commonly 

measured material parameters and those required by the Hardening Soil model. Interpretation of Table 

9 requires consideration of the following notes: 

1. A compressibility parameter has a unit of inverse pressure (e.g. kPa-1) while stiffness (e.g. 𝐸′
𝑢𝑟
𝑟𝑒𝑓

 

and 𝐸′
50
𝑟𝑒𝑓

) is the inverse of compressibility and has units of pressure (e.g. kPa).  

2. The reference tangent stiffness 𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

 is measured in an oedometer loading test during primary 

compression at a reference confining stress 𝜎′
1 = 𝜎′

𝑣 = 𝑝𝑟𝑒𝑓  of 100 kPa. The stiffness 𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

 is 

the inverse coefficient of volume compressibility 𝑚𝑣; that is, 𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

= 1 𝑚𝑣⁄ .  

3. Conversion between 𝐸′
𝑢𝑟
𝑟𝑒𝑓

 and a shear modulus 𝐺𝑢𝑟
𝑟𝑒𝑓

 is possible because these are true elastic 

properties. In contrast, no such conversion is possible for the tangent stiffness 𝐸′
50
𝑟𝑒𝑓

. 

4. The parameter 𝑒0 is the initial void ratio of the soil specimen and is only an approximation of the 

actual void ratio at which 𝑚𝑣 is determined.  



 

68 

5. The approximation of 𝐾0
𝑛𝑐 ≈ 1 − sin∅′ is only applicable for one-dimensional axially symmetric 

stress paths such as experienced in an oedometer and in some geological environments. For 

example, in the case of isotropic compression, 𝐾0
𝑛𝑐 = 1.0.  

6. The parameter 𝐸′
50
𝑟𝑒𝑓

 is between about 1.25 and 2.0 times 𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

 for stiff and soft soils 

respectively; however, large ratios of 𝐸′
50
𝑟𝑒𝑓

𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

⁄  can lead to numerical problems depending on 

the value of 𝐾0
𝑛𝑐.  

Table 9. Relationships between Hardening Soil material parameters and other commonly measured quantities.  

Parameter Relationship 

𝐸′
𝑢𝑟
𝑟𝑒𝑓

 𝐸′
𝑢𝑟
𝑟𝑒𝑓

~3𝐸′
50
𝑟𝑒𝑓

 

 𝐸′
𝑢𝑟
𝑟𝑒𝑓

= 2(1 + 𝜈′
𝑢𝑟)𝐺𝑢𝑟

𝑟𝑒𝑓
 

 
𝐶𝑠 ≈

(1 + 𝜈′
𝑢𝑟)(1 − 2𝜈′

𝑢𝑟)

𝐸′
𝑢𝑟
𝑟𝑒𝑓(1 − 𝜈′

𝑢𝑟)
(1 + 𝑒0)

𝑝𝑟𝑒𝑓

𝐾0
ln 10 

𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

 𝐶𝑐 ≈
1

𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

(1 + 𝑒0)𝑝
𝑟𝑒𝑓 ln 10 

𝐾0𝑛𝑐 𝐾0𝑛𝑐 ≈ 1 − sin𝜙′ 

 

5.10.2.1 Initialization of State Parameters 

The Hardening Soil model requires an input for the isotropic over-consolidation ratio (𝑂𝐶𝑅) which is 

defined as:  

𝑂𝐶𝑅 =
𝑝𝑝,𝑚𝑎𝑥

′

𝑝𝑝,𝑖
′  Equation 161 

 

where 𝑝𝑝,𝑚𝑎𝑥
′  is the past maximum value of the equivalent isotropic stress and 𝑝𝑝,𝑖

′  is the current, or 

initial, equivalent isotropic stress (Figure 31).   
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Figure 31. Initial and maximum equivalent isotropic pre-consolidation stresses.  

The initial equivalent isotropic stress 𝑝𝑝,𝑖
′  is given in terms of initial invariants using Equation 150: 

𝑝𝑝,𝑖
′ = √

𝑞𝑖
2

𝑀2𝑔2(𝜃𝑖)
+ 𝑝′

𝑖
2 Equation 162 

 

The past maximum value of the equivalent isotropic stress is then calculated as: 

𝑝𝑝,𝑚𝑎𝑥
′ = 𝑂𝐶𝑅𝑝𝑝,𝑖

′  Equation 163 

 

The state parameter 𝛾𝑝 must be initialized from Equation 140. An additional assumption is therefore 

required about the stress history of the soil if the soil is over-consolidated. Assuming that the soil 

experienced an axially symmetric, one-dimensional, loading-unloading history, the stress invariants are 

linked by (Figure 31): 

𝑞𝑚𝑎𝑥 = 𝜂𝑛𝑐𝑝𝑚𝑎𝑥
′ =

3(1 − 𝐾0
𝑛𝑐)

1 + 2𝐾0
𝑛𝑐 𝑝𝑚𝑎𝑥

′  Equation 164 

 

where 𝜂𝑛𝑐 is the 1D normal compression stress ratio and 𝐾0
𝑛𝑐 is the earth pressure coefficient for the 

normally compressed state. Sustituting 𝑞𝑚𝑎𝑥 from Equation 164 into Equation 150, after considering a 

Lode angle 𝜃 corresponding to one-dimensional normal compression (i.e., 𝑔 (−
𝜋

6
) = 1) and solving for 

past maximum mean effective stress:  

Initial 
point

max. 
point
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𝑝𝑚𝑎𝑥
′ =

𝑝𝑝,𝑚𝑎𝑥
′

√1 + (
𝜂𝑛𝑐
𝑀

)
2
 

Equation 165 

 

In both Equation 162 and Equation 165, the square of the cap’s aspect ratio 𝑀2 is required. The 

parameter 𝑀 is a secondary model parameter that is calculated from the other model parameters: 

𝑀2 =

3𝜂𝑛𝑐 [
𝑃′

𝑢𝑟
𝑟𝑒𝑓

𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓 − 1]

2 [
𝑃′

𝑢𝑟
𝑟𝑒𝑓

𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓 −

1(1 + 𝜈′
𝑢𝑟)

3(1 − 2𝜈′
𝑢𝑟)

𝜂𝑛𝑐]

 Equation 166 

Where 𝜂𝑛𝑐 is the 1D normal compression stress ratio (see Equation 164), and 𝑃′
𝑢𝑟
𝑟𝑒𝑓

 is the P-wave 

modulus or the constrained modulus defined as: 

𝑃′
𝑢𝑟
𝑟𝑒𝑓

=
𝐸′

𝑢𝑟
𝑟𝑒𝑓(1 − 𝜈′

𝑢𝑟)

(1 + 𝜈′
𝑢𝑟)(1 − 2𝜈′

𝑢𝑟)
 Equation 167 

 

5.10.3 Conceptual Response 

Section 5.1 describes the approach being taken here to explore some of most important aspects of the 

Hardening Soil model. As noted, the reader is directed to the example files and the literature for a more 

complete discourse on the assumptions and/or limitations of any particular constitutive model. The 

comparable explorations of the Hyperbolic 𝐸 − 𝐵 model (Section 5.7.3), Mohr-Coulomb model (Section 

5.8.3), and H/S Mohr-Coulomb model (Section 5.9.3) should be consulted before reading this section in 

order to gain additional insights into the stress-strain response of this model.  

Figure 22 depicts the conceptualized simulated results of a conventional drained triaxial test on a 

dilative material (𝜓 > 0) represented by the Hardening Soil model. The exponent 𝑚 was assumed equal 

to 1.0 so that the expanding shear yield loci conveniently plot as straight lines in the 𝑝′ − 𝑞 stress plane 

(Figure 32a). The peak friction 𝜙′ was assumed non-zero while the cohesion was assumed zero; 

consequently, the shear yield loci pass through the origin. As with the drained triaxial test discussed in 

Section 5.8.3 and Section 5.9.3, it is assumed that the increments start from stress state 𝑃 lying on the 𝑝’ 

axis and at a point in the 𝑉 − 𝑝′ compression plane associated with url 𝑅. The initial shear and cap yield 

loci pass through point 𝑃 (𝑂𝐶𝑅 = 1); the shear surface is aligned with the 𝑝’ axis while the cap yield 

surface (not shown until loading initiates) has its initial tip stress at point 𝑃. The response of the 

Hardening Soil model at the onset of loading is independent of the initial state in the compression plane; 

consequently, it is rather paradoxical to display an unloading-reloading line and isotropic normal 

compression line in Figure 18b. The paradox is ostensibly worsened by having the initial shear and cap 

yield loci pass through point 𝑃, suggesting normal compression, while having the initial void ratio 

located on an unloading-reloading line instead of the isotropic normal compression line (Figure 22b). 
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The reason for the curious initial state in the 𝑉 − 𝑝′ compression plane, and the display of an unloading-

reloading and normal compression line, is to assist with the interpretation of the models conceptual 

stress-strain response.  

 

Figure 32. Conventional drained triaxial compression test on a soil described by the Hardening Soil model: (a) 𝒑′ − 𝒒 
effective stress plane (with increments of plastic volumetric and deviatoric strain); (b) 𝑽 − 𝒑′ compression plane; (c) 𝒒 − 𝜺𝒒 

stress-strain plot; (d) 𝑽 − 𝜺𝒒 volume-strain plot. 

Point 𝑃 lies at the tip of the cap yield locus and on the shear yield locus; consequently, as soon as 

drained compression initiates, both yield loci need to expand to accommodate the new stress states. 

Plastic deviatoric strains develop from the start of the drained compression. The plastic potential 

passing through 𝑄 and 𝑅 is horizontal (𝜓𝑚 = 0; Equation 146) and the direction of the plastic strain 

increment vector is vertical (Figure 32a), indicating that plastic shear deformation is occurring without 

plastic change in volume. The soil therefore exhibits a continuous curved stress-strain 𝑞−𝜀𝑞 response 

(Figure 32c) that is expected of primary loading, but a stiff elastic response in the 𝑉 − 𝑝′ compression 

plane (Figure 32b). It should now be clear why the initial state 𝑃, and states 𝑄 and 𝑅, were located on an 

unloading-reloading line (Figure 32b).  

At 𝑅, it is assumed that sin𝜙′
𝑚 ≥ (3 4⁄ ) sin𝜙′ and that the mobilized friction angle 𝜙′

𝑚 (Equation 149) 

is equal to the critical state friction angle 𝜙′
𝑐𝑠, causing the mobilized dilation angle to be calculated 

according to Equation 147 (Figure 32a). The yield locus at 𝑅 therefore represents the critical state line in 

the 𝑝′ − 𝑞 effective stress plane. The progress 𝑅𝑆𝑇 is associated with a plastic strain increment vector 

on the plastic potentials (e.g. pp 𝑆 and pp 𝑇) that points increasingly to the left (Figure 32a), indicating 

that that if a continued increase in shear strain is to occur, with plastic shear strains of the same sign as 

the preceding elastic shear strains (i.e. positive), then negative plastic volumetric strain must occur; that 

is, plastic volumetric expansion. The mobilized dilation angle initiates at zero at point 𝑅 and increases to 

the peak value (𝜓𝑚 = 𝜓) at 𝑇, where the mobilized friction angle equals the peak friction angle (𝜙′
𝑚 =

𝑉

𝑝 

i so-ncl
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𝜙′; see Figure 27). The gradual transition in the mobilized dilation angle from zero to peak is reflected in 

the similar gradual transition from compression to expansion in the volume-strain 𝑉 − 𝜀𝑞 curve (Figure 

32d). At some point after 𝑆, the mobilized dilation angle is nearing the peak value, causing the 𝑉 − 𝜀𝑞 

response to become nearly linear in the volume-strain 𝑉 − 𝜀𝑞 plot (Figure 32d) and nearly vertical in the 

𝑉 − 𝑝′ compression plane (Figure 32b). In the absence of a dilatational cut-off, plastic volumetric 

expansion will continue indefinitely with continued shearing, causing the void ratio to track vertical 

upwards in the 𝑉 − 𝑝′ compression plane (Figure 32b).  

Figure 32a shows the evolution of the cap shear surface – and plastic potential given the assumption of 

associated plasticity – as it expands to pass through the current stress state. The cap yield surface, does 

not, however, affect the stress-strain response. As noted in Section 5.10.1.2, the stress path would have 

to track back inside the expanded elastic zone, and then reengage the cap yield surface in a compression 

dominated loading path, in order for compression hardening to dominate the response.  

5.11 Ubiquitous Joint Model 
The ubiquitous joint model accounts for the presence of an oriented weak plane, that is, a joint set, 

embedded in a Sigma/W Mohr-Coulomb material model (sections 5.8 and 5.9). This model is useful for 

modelling materials with closely spaced joints or bedding planes. The strength criterion of the weak 

plane is governed by a simple Coulomb criterion with a tension cut-off. A non-associated flow rule is 

used for joint shear failure and an associated flow rule for joint tension failure. 

The Coulomb criterion and plastic potential for the joint material are: 

𝑓𝑗𝑠(𝜎𝑛, 𝜏) =  𝜏 − 𝜎𝑛𝑡𝑎𝑛𝜙𝑗
′ − 𝑐𝑗

′ Equation 168 

𝑔𝑗𝑠(𝜎𝑛, 𝜏) =  𝜏 − 𝜎𝑛𝑡𝑎𝑛𝜓𝑗  Equation 169 

 

The tension criterion and plastic potential for the joint material are: 

𝑓𝑗𝑡(𝜎𝑛) = 𝜎𝑗𝑡 − 𝜎𝑛 Equation 170 

𝑔𝑗𝑡(𝜎𝑛) =  −𝜎𝑛 Equation 171 

 

Table 10 lists the weak plane strength parameters. This model has two variations in Sigma/W; a 

perfectly plastic version and a hardening/softening version. In the hardening/softening version of this 

material model, the strength parameters can be made to vary as a function of accumulated plastic strain 

(Equation 136). In addition to the strength parameters, the weak plane orientation must be specified 

with a normal vector to the weak plane in the Sigma/W UI. 𝜎𝑛 and 𝜏 above are the normal and shear 

stresses acting on the weak plane. 
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Table 10. Weak Plane (the joint) Strength Properties. 

Parameter Symbol Unit 

Effective angle of shear resistance as a function of 𝜀𝑞
𝑝

 𝜙𝑗
′ ° 

Effective cohesion as a function of 𝜀𝑞
𝑝

 𝑐𝑗
′ 𝑘𝑃𝑎 

Angle of dilation as a function of 𝜀𝑞
𝑝

 𝜓𝑗 ° 

Tensile strength (a positive value) as a function of |𝜀3
𝑝
| 𝜎𝑗𝑡 𝑘𝑃𝑎 

 

The ubiquitous joint model requires two sets of properties to be specified: 1) those of the Mohr-

Coulomb matrix (Table 7) and 2) those of the weak plane (Table 10). The model operates in two steps. 

Stresses are first corrected for the Mohr-Coulomb matrix. These corrected stresses are then resolved 

into normal and shear stresses acting on the weak plane and they are further adjusted according to the 

weak plane constitutive equations above. 

5.12 Generalized Hoek-Brown Model 
The Hoek-Brown criterion (Hoek et al., 2002) is a widely accepted failure criterion for rock masses. The 

generalized Hoek-Brown criterion is expressed as  

𝜎1
′ = 𝜎3

′ + 𝜎𝑐𝑖  (𝑚𝑏

𝜎3
′

𝜎𝑐𝑖
+ 𝑠)

𝑎

 Equation 172 

where 𝑚𝑏 , 𝑠, 𝑎 are material constants, 𝜎1
′ and 𝜎3

′  are the maximum and minimum principal effective 

stresses, respectively, and 𝜎𝑐𝑖 is the unconfined compressive strength of the intact rock.  

The implementation of Hoek-Brown in Sigma/W is derived directly from the Mohr-Coulomb model (see 

section 5.8) and includes dilation angle and an optional tensile yield criterion. The non-linear yield 

surface described by Equation 172 is approximated by the Mohr-Coulomb tangent at the current stress 

level at 𝜎3
′ . In the tensile domain the Mohr-Coulomb tangent at 𝜎3

′ = 0 is used. The implementation 

does not allow hardening or softening of material strength parameters. User specified strength 

parameters are listed in Table 11. The model uses a non-associated flow rule for the Mohr-Coulomb 

approximation to the Hoek-Brown surface and an associated flow rule for the tensile yield surface. 

In the implementation, the Hoek-Brown model checks the user input dilation angle against the 

calculated instantaneous friction angle calculated from the tangent to the Hoek-Brown surface. Dilation 

for the current calculation step is clamped to the minimum of friction and user specified dilation. If 

dilation is set to 89 degrees, associated flow can be simulated where friction equals dilation. If you set 

dilation to 5 degrees and instantaneous friction was 10 degrees then dilation would remain at 5 degrees 

for this calculation step. 
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Table 11. Hoek-Brown Strength Properties 

Parameter Symbol Unit 

Unconfined compressive strength of the intact rock 𝜎𝑐𝑖 𝑘𝑃𝑎 

Hoek-Brown parameters 𝑚𝑏 , 𝑠, 𝑎   

Angle of dilation  𝜓 ° 

Tensile strength (a positive value)  𝜎𝑡 𝑘𝑃𝑎 

5.13 Modified Cam Clay Model  
The Modified Cam Clay (MCC) model (Roscoe and Burland, 1968; Schofield and Wroth, 1968; Roscoe and 

Schofield, 1963), was one of the first critical state constitutive models for soils to be developed within 

the generalized elastic-plastic framework (Section 3.4). The model simulates hardening or softening 

behaviour and the associated volumetric response (i.e. compression or expansion) when plastic straining 

is occurring. The simulated response is dependent on the overconsolidation state of the soil and the 

stress path to which the soil is being subjected. Despite its deficiencies, the continued use of the model 

in practice and research endeavors is a testament to its mathematical elegance, easy parameterization, 

and insightful simulated responses. The most successful applications of the MCC model involved clay 

deposits comprising normally compressed to lightly overconsolidated clays. The model is generally 

understood to overestimate the peak shear capacity of heavily overconsolidated soils (see Section 

5.13.3). 

5.13.1 Formulation 

The modified Cam Clay model adopts an associated flow rule, meaning that the yield function, 𝐹, and 

the potential function, 𝑃, are identical. The function can be written as:  

𝐹({𝜎′}, {𝑘}) = 𝑃({𝜎′}, {𝑚}) = (
𝑞

𝑝′𝑀
)
2

− (
𝑝′

0

𝑝′
− 1) Equation 173 

 

where 𝑝′
0 is the equivalent isotropic pre-consolidation stress that defines the size of the current yield 

locus and therefore defines the hardening parameter 𝑘 = 𝑚. The slope of the critical state line in 𝑞 − 𝑝’ 

stress space 𝑀 is given as: 

𝑀 =
6sin𝜙′

3 − sin𝜙′
 Equation 174 

 

where 𝜙′ is the critical state friction angle. 

Figure 33 shows the ellipsoidal yield surface of the modified Cam clay model in principal stress space. 

The size of the ellipsoid is described by the vertex on the major axis; that is, the intersection of the 

ellipsoid with the space diagonal. This value is essentially the state parameter 𝑘 of the model, which can 
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be calculated from the maximum past effective stress to which the soil was subjected, and is 

comparable to 𝜉 in Figure 2.  

 

Figure 33. Modified Cam clay yield surface in principal stress space by Bbanerje is licensed under CC BY-SA 3.0 

Figure 34a shows the elliptical yield locus of the MCC model in the 𝑝′ − 𝑞 effective stress plane 

(Equation 173). This view of the yield locus can be conceptualized as a cross-section through the yield 

surface in principal stress space (Figure 33) that runs along the space diagonal. Only one side of the 

resulting ellipse is shown in Figure 34 because 𝑞 (Equation 15) is always positive. The size of the yield 

locus is controlled by the equivalent isotropic preconsolidation stress 𝑝′
0 and the shape of the yield 

locus is controlled by the slope of the critical state failure line 𝑀.  Equation 174 corresponds to a 

Drucker-Prager circular circumscription of the irregular Mohr-Coulomb hexagon failure surface at 𝜃 =

−𝜋/6 in the deviatoric plane (i.e. triaxial compression; Figure 15). Figure 33 also shows the Drucker-

Prager conical failure surface that that controls the shape of the ellipsoid (i.e. the size of the minor axis). 

https://en.wikipedia.org/wiki/Critical_state_soil_mechanics
https://en.wikipedia.org/wiki/User:Bbanerje
https://creativecommons.org/licenses/by-sa/3.0/
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Figure 34. Elliptical yield locus for modified Cam clay model in 𝒑′ − 𝒒 effective stress plane (with increments of plastic 
volumetric and deviatoric strain); (b) 𝑽 − 𝒑′ compression plane; (c) 𝑽 − 𝒍𝒏 𝒑′ compression plane. 

An inherent assumption of the modified Cam clay model is that the isotropic normal compression line 

and unloading-reloading lines (Figure 34b) can be assumed linear if the mean effective stress axis is 

plotted with a natural logarithmic scale (Figure 34c). The equation of the isotropic normal compression 

line (ncl) is given by:  

𝑉 = 𝑁 − 𝜆 ln 𝑝′
0  Equation 175 

 

and the equation of any particular unloading-reloading line (url) corresponding to an equivalent 

isotropic preconsolidation stress 𝑝′
0 is given by: 

𝑉 = 𝑉𝜅 − 𝜅 ln𝑝′  Equation 176 

 

where 𝑉 is specific volume, 𝑁 and 𝑉𝜅 are intercepts at 𝑝′ = 1, 𝜆 the slope of the isotropic normal 

compression line, and 𝜅 the slope of the unloading-reloading line in the 𝑉 − ln𝑝′ compression plane 

(Figure 34c). The intercepts 𝑁 and Γ locate the isotropic normal compression and critical state lines in 

the 𝑉 − ln𝑝′compression plane (Figure 34c). These parameters are not used to form the elastic-plastic 

stiffness matrix, rather they are secondary quantities that can be calculated from the primary model 

parameters and initial state of the soil.  

Stress paths tracking inside the yield surface 𝐹({𝛿𝜎′}, {𝑘}) < 0 are associated with purely elastic 

behaviour. The recoverable changes in volume are linked to changes in mean effective stress 𝑝′ through 

the incremental form of Equation 176: 

𝑉
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𝛿𝜀𝑝
𝑒 =

𝜅

𝑉

𝛿𝑝′

𝑝′
  Equation 177 

From Equation 177, the effective bulk modulus is deduced as: 

𝐾′ =
𝑉𝑝′

𝜅
 Equation 178 

Assuming a constant value of Poisson’s ratio 𝜈′ implies a non-linear effective elastic modulus given by:  

𝐸′ = 3𝐾′(1−2𝜈′) Equation 179 

and a corresponding elastic shear modulus that is given by: 

𝐺 =
3(1 − 2𝜈′)

2(1 + 𝜈′)
𝐾′ Equation 180 

 

Equation 180 indicates that the elastic shear modulus is a non-linear function of mean effectives stress 

and void ratio. The deviatoric strain increment 𝛿𝜀𝑞
𝑒  is linked to changes in deviatoric stress by Equation 

29 by means of Equation 180.  

Stress paths that engage the yield locus are associated with plastic straining (i.e. 𝐹({𝛿𝜎′}, {𝑘}) = 0). The 

equations of the isotropic normal compression and unloading-reloading lines can be used to calculate 

the plastic volumetric strain as (Wood, 1990): 

𝛿𝜀𝑝
𝑝

= (𝜆 − 𝜅)
𝛿𝑝′

0

𝑉𝑝′
0

  Equation 181 

 

Equation 181 is a hardening law that links the changing size of the yield locus 𝛿𝑝′
0 to the plastic 

volumetric strain increment 𝛿𝜀𝑝
𝑝

.  

The outward normal to the plastic potential defines the relative magnitudes of the plastic volumetric 

strain 𝛿𝜀𝑝
𝑝

 and the plastic deviatoric strain 𝛿𝜀𝑞
𝑝

 (Section 3.4). The plastic potential function of the MCC 

model has the same mathematical form as the yield function and is therefore also represented by the 

ellipse in Figure 34a. Soils that yield with a stress state to the right of 𝐶 (Figure 34a) are associated with 

incremental plastic volumetric strains 𝛿𝜀𝑝
𝑝

 that are positive (i.e. compression) and expansion (i.e. 

hardening) of the yield locus (i.e. positive 𝛿𝑝′
0; Equation 181). Soils that yield with a stress state to the 

left of 𝐶 (Figure 34a) are associated with incremental plastic volumetric strains that are negative (i.e. 

dilative/expansive) and collapse (i.e. softening) of the yield locus (i.e. negative 𝛿𝑝′
0; Equation 181). 

Regardless of the scenario, continued shearing will eventually result in the stress path reaching the top 

of the yield locus 𝐶, where the normal to the plastic potential is vertical, indicating zero incremental 

plastic volumetric strain. At failure, any further shearing is associated with a critical state condition: the 

yield locus is stationary and there are no further changes in volume. The specific volume of the soil 
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resides on the critical state line (csl) in the 𝑉 − ln𝑝′compression plane (Figure 34c) once the critical 

state has been reached.  

5.13.2 Material Parameters 

The MCC model simulates hardening or softening behaviour in a natural way and does so using only five 

material parameters: the slopes of the isotropic normal compression line 𝜆 and unloading-reloading line 

𝜅 in the 𝑉 − ln 𝑝′compression plane (Figure 34c), the slope of the failure line 𝑀 in the 𝑝′ − 𝑞 effective 

stress plane (via 𝜙′; Equation 174), and two elastic constants 𝐸′ and 𝜈′
𝑢𝑟. Table 12 provides a summary 

of the required parameters. Parameterization of the elastic response requires an input for Poisson’s 

ratio 𝜈′
𝑢𝑟 that is commensurate with unloading-reloading (i.e. a purely elastic response, hence the 

subscript 𝑢𝑟). Initialization of the model also requires definition of the initial overconsolidation state 

(𝑂𝐶𝑅) and initial void ratio 𝑒0 = 𝑉0 − 1 of the soil.  

Table 12. Parameters for the modified Cam clay model 

Parameter Symbol Unit 

Effective angle of shear resistance 𝜙′ ° 

Slope of normal compression line λ  

Slope of the unloading-reloading line κ  

Poisson’s ratio  𝜈′
𝑢𝑟  

Isotropic over-consolidation ratio  𝑂𝐶𝑅 = 𝑝0,𝑚𝑎𝑥
′ 𝑝0,𝑖

′⁄   

Coefficient of earth pressure for the overconsolidated state* 𝐾0
𝑜𝑐  

Initial void ratio 𝑒  

*The coefficient of earth pressure for the over-consolidated state 𝐾0
𝑜𝑐 is an optional parameter for establishing the initial 

stresses by means of a Gravity Activation analysis in combination with the 𝐾0 -procedure (Section 4.1.2).  

Table 13 provides a number of common relationships to assist with conversion between commonly 

measured material parameters and those required by the MCC model. Interpretation of Table 13 

requires consideration of the following notes: 

1. A compressibility parameter has a unit of inverse pressure (e.g. kPa-1) while stiffness (e.g. 𝐸′
𝑢𝑟
𝑟𝑒𝑓

) 

is the inverse of compressibility and has units of pressure (e.g. kPa).  

2. The reference unloading-reloading elastic stiffness 𝐸′
𝑢𝑟
𝑟𝑒𝑓

 is measured in triaxial compression at a 

reference confining stress 𝑝𝑟𝑒𝑓 of 100 kPa and is a true elastic property.  

3. The reference tangent stiffness 𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

 is measured in an oedometer loading test during primary 

compression at a reference confining stress 𝜎′
1 = 𝜎′

𝑣 = 𝑝𝑟𝑒𝑓  of 100 kPa. The stiffness 𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

 is 

the inverse coefficient of volume compressibility 𝑚𝑣; that is, 𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

= 1 𝑚𝑣⁄ .  

4. The slopes of the unloading-reloading and normal compression lines in the 𝑉 − ln𝑝′ 

compression plane can be approximated from the conventional compression index 𝐶𝑐 and 

swelling index 𝐶𝑠 measured in the 𝑉 − log𝜎′
𝑣 compression plane.  
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Table 13. Relationships between modified Cam clay material parameters and other commonly measured quantities.  

Parameter Relationship 

𝜅 
𝜅 ≈

𝐶𝑠

ln 10
 

 
𝐶𝑠 ≈

(1 + 𝜈′
𝑢𝑟)(1 − 2𝜈′

𝑢𝑟)

𝐸′
𝑢𝑟
𝑟𝑒𝑓(1 − 𝜈′

𝑢𝑟)
(1 + 𝑒0)

𝑝𝑟𝑒𝑓

𝐾0
ln 10 

𝜆 
𝜆 ≈

𝐶𝑐

ln 10
 

 
𝐶𝑐 ≈

1

𝐸′
𝑜𝑒𝑑
𝑟𝑒𝑓

(1 + 𝑒0)𝑝
𝑟𝑒𝑓 ln 10 

 

5.13.2.1 Initialization of State Parameters 

The modified Cam clay soil model requires an input for the isotropic over-consolidation ratio (𝑂𝐶𝑅) 

which is defined as:  

𝑂𝐶𝑅 =
𝑝0,𝑚𝑎𝑥

′

𝑝0,𝑖
′  Equation 182 

 

where 𝑝0,𝑚𝑎𝑥
′  is the past maximum value of the equivalent isotropic stress and 𝑝0,𝑖

′  is the current, or 

initial, equivalent isotropic stress (Figure 35).   

 

Figure 35. Initial and maximum equivalent isotropic pre-consolidation stresses.  

The initial equivalent isotropic stress 𝑝0,𝑖
′  is given in terms of initial invariants using Equation 173: 

Initial 
point
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𝑝0,𝑖
′ = 𝑝𝑖

′ [1 + (
𝑞𝑖

𝑝𝑖
′𝑀

)

2

] Equation 183 

 

The past maximum value of the equivalent isotropic stress is then calculated as: 

𝑝0,𝑚𝑎𝑥
′ = (𝑂𝐶𝑅)𝑝0,𝑖

′  Equation 184 

 

5.13.3 Conceptual Response 

Section 5.1 describes the approach being taken here to explore some of most important aspects of the 

modified Cam clay model. As noted, the reader is directed to the example files and the literature for a 

more complete discourse on the assumptions and/or limitations of any particular constitutive model. 

Wood (1990) provides an eloquent and insightful exploration of the modified Cam clay model in both 

drained and undrained triaxial compression. Wood’s (1990) discourse on the drained response of the 

modified Cam clay model forms the basis of the information presented herein and was a template for 

the comparable explorations of the other material models. The presentations of those models should be 

consulted before reading this section in order to gain additional insights into the stress-strain response 

of this model.  

Figure 36 depicts the conceptualized simulated results of a conventional drained triaxial test on a lightly 

overconsolidated material represented by the modified Cam clay model. Parameterization of the 

modified Cam clay model requires specification of the initial void ratio and 𝑂𝐶𝑅. These inputs are used 

in combination with initial stresses to initialize the state of the soil (point 𝐴) in the 𝑉 − 𝑝′ compression 

plane and in the 𝑝′ − 𝑞 stress plane relative to the initial yield surface (Section 5.13.2.1). The soil could 

have been subjected to isotropic normal compression to 𝑝′ = 𝑝′
0𝐵 and then unloaded isotropically to 𝐴. 

Alternatively, the soil could have been compressed and then unloaded under conditions of one-

dimensional axisymmetry, resulting in the same yield locus with tip pressure 𝑝′
0𝐵 and associated elastic-

unloading-reloading line url 𝐵 ending at 𝑝′ = 𝑝′
0𝐵 on the isotopic normal compression line (Figure 36b). 

The stress history cannot be deduced from 𝐴 alone because it is embodied in the initial conditions, the 

initial void ratio, and the 𝑂𝐶𝑅.  
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Figure 36. Conventional drained triaxial compression test on lightly overconsolidated soil as described by the modified Cam 
clay model: 𝒑′ − 𝒒 effective stress plane (with increments of plastic volumetric and deviatoric strain); (b) 𝑽 − 𝒑′ compression 
plane; (c) 𝒒 − 𝜺𝒒 stress-strain plot; (d) 𝑽 − 𝜺𝒒 volume-strain plot (after Wood, 1990). 

The drained compression from 𝐴 to 𝐵 involves a stress change inside the yield locus; consequently, the 

response is purely elastic (Figure 36). The soil shows a stiff elastic response on drained compression 

from 𝐴 to 𝐵, with both points residing on the unloading-reloading line url 𝐵. The elastic volumetric 

strain increment could be calculated by numerical integration of Equation 177 (Figure 36b). The tangent 

derivative at any point on the stress-strain curve 𝑞−𝜀𝑞 from 𝐴 to 𝐵 is equal to 3𝐺 (Equation 180 via 

Equation 178; Figure 36c). The stress-strain curve 𝑞−𝜀𝑞 shows a sharp drop in stiffness when the soil 

yields at 𝐵 because plastic strains start to develop.  

The direction of the outward normal to the yield locus yl 𝐵 at 𝐵 indicates that the plastic deviatoric 

strain is accompanied by plastic volumetric compression. Wood (1990) notes that the volume-strain 

curve 𝑉−𝜀𝑞 also shows a break at 𝐵; however, the sharpness of the break depends on the soil 

parameters 𝜅, 𝜆, 𝑀 (Equation 174), and 𝐺 (Equation 180) and on the stress ratio 𝜂 at which yield occurs 

at 𝐵 (Figure 36d). Wood (1990) goes on to note that it would possible for the ratio of elastic volumetric 

and deviatoric strain increments just before yield at 𝐵 to be the same as the ratio of elastic plus plastic 

volumetric and deviatoric strain increments just after yielding at 𝐵.  

Additional increments of drained compression 𝐵𝐹 are associated with progressive enlargement of the 

yield locus, a phenomenon referred to as hardening. The direction of the outward normal to the yield 

locus also changes progressively, initially pointing to the right (i.e. plastic volumetric compression) but 

eventually becoming parallel to the 𝑞 axis at the crest of the yield locus 𝐹, where the ratio of plastic 

deviatoric strain to plastic volumetric strain is infinite (Figure 36a). At 𝐹, the stress ratio 𝜂 = 𝑞 𝑝′⁄  is 

equal to the slope of the critical state line 𝑀 and the mean effective stress 𝑝′ = 𝑝′
0𝐹 2⁄ . At this point, 

unlimited plastic deviatoric strains will continue to develop with no plastic volumetric strain, which 

means that the yield locus becomes stationary (i.e. 𝛿𝑝′
0 = 0). Once the stress path intersects the failure 
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surface, plastic shearing continues at constant effective stresses, meaning that loading can proceed no 

further. The mathematical formulation of the MCC model inherently produces 𝛿𝜀𝑝
𝑝

𝛿𝑝′⁄ = 0 and 

𝛿𝜀𝑞
𝑝

𝛿𝑞⁄ = ∞.  

The progress of the drained compression 𝐵𝐹 can also be described with reference to the 𝑉 − 𝑝′ 

compression plane (Figure 36b) and stress-strain 𝑞−𝜀𝑞 curve (Figure 36c). Starting at 𝐵, the change in 

volume is dominated by the irrecoverable plastic deformations, which gradually approach zero as the 

stress ratio 𝜂 = 𝑞 𝑝′⁄  increases towards 𝑀. At 𝐹, the plastic volumetric strain goes to zero and the 

effective stresses remain constant, which means that the elastic volumetric strain also goes to zero and 

there is no further change in volume. The slopes 𝛿𝑞 𝛿𝜀𝑞⁄  and 𝛿𝑉 𝛿𝜀𝑞⁄  decreases steadily towards zero as 

𝜂 increases towards 𝑀. The information in Figure 36b, c can be combined to show how the volume 

changes with deviatoric strain (Figure 36d). The modified Cam clay model produces a ratio of plastic 

strains 𝛿𝜀𝑝
𝑝

𝛿𝜀𝑞
𝑝

⁄  that decreases steadily towards zero as 𝜂 increases towards 𝑀, which, when combined 

with zero elastic volumetric strain (i.e. constant effective stresses) means that the slope 𝛿𝑉 𝛿𝜀𝑞⁄  must 

also steadily decrease towards zero (Figure 36d).  

As noted in Section 5.13, the most successful applications of modified Cam clay have involved lightly to 

normally compressed soils. Having stated that, it remains instructive to consider the response of a 

heavily overconsolidated soil (Figure 37) and to compare this response to that of the H/S Mohr-Coulomb 

(Section 5.9.3). On drained compression, the response would be elastic until the yield locus yl 𝑄 was 

reached at a point 𝑄 lying to the left of the critical state line (Figure 37a). Wood (1990) notes that the 

plastic strain increment vector points to the left at 𝑄, indicating that if a continued increase in deviatoric 

strain is to occur, with plastic deviatoric strain of the same sign as the preceding elastic deviatoric 

strains, then this must be associated with negative plastic volumetric strain; that is, plastic volumetric 

expansion.  
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Figure 37. Conventional drained triaxial compression test on heavily overconsolidated soil as described by the modified Cam 
clay model: 𝒑′ − 𝒒 effective stress plane (with increments of plastic volumetric and deviatoric strain); (b) 𝑽 − 𝒑′ compression 
plane; (c) 𝒒 − 𝜺𝒒 stress-strain plot; (d) 𝑽 − 𝜺𝒒 volume-strain plot (after Wood, 1990). 

The plastic volumetric expansion that initiates at 𝑄 is associated with a decrement in the size of the yield 

locus 𝛿𝑝′
0 < 0; a process referred to as softening. The effective stress path retreats towards 𝑃 with 

continued shearing. The progress of the test is deduced in the compression plane (Figure 37b) by 

projecting the points 𝑅, 𝑆, and 𝑇 in the stress plane (Figure 37a) from their yield loci yl 𝑅, yl 𝑆, and yl 𝑇 

down to the corresponding unloading-reloading lines url 𝑅, url 𝑆, and url 𝑇 (Wood, 1990). As before, the 

direction of the plastic strain increment vector gradually approaches the vertical at 𝑇 where 𝜂 = 𝑀. At 

that point, plastic deviatoric strains can continue without plastic volume changes. The progress of the 

drained compression 𝑄, 𝑅, 𝑆, 𝑇 can also be described with reference to the 𝑉 − 𝑝′ compression plane 

(Figure 37b) and stress-strain 𝑞−𝜀𝑞 curve (Figure 37c). The sharp break at 𝑄 corresponds to the onset of 

plastic volumetric expansion (Figure 37b and d). The initial elastic rise in 𝑞 and decrease in volume (𝑃𝑄) 

is followed by a drop in 𝑞 and increase in 𝑉 towards the limiting values corresponding to 𝑇.  

The main deficiency of the modified Cam clay model is primarily rooted in the potential overestimation 

of the peak deviatoric stress corresponding to 𝑄. Point 𝑄 might correspond to a peak mobilized friction 

angle that is theoretically unjustified. The user has no direct control over the mobilized friction angle 

and magnitude of dilatational strains, which are controlled indirectly by means of the material 

parameters 𝜅, 𝜆, and 𝜙′. This contrasts sharply with the H/S Mohr-Coulomb model (Section 5.9), where 

the mobilized friction angle and dilation angle are functionally related to the plastic deviatoric strain, but 

bears similarity to the Hardening Soil model (Schanz et al. 1999) that prescribes the dilatancy 

relationship by linking the dilation angle to the mobilized friction angle. In other words, the dilatancy 

relationship is also prescribed by the modified Cam clay model formulation.  
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5.14 SANICLAY model 
SANICLAY is a soil model that is suitable for simulating the behaviour of anisotropic clayey materials. 

Soils that are uniformly deposited over a larger area are generally subjected to a one-dimensional 

loading history. The ratio of horizontal to vertical effective stresses in such soils is referred to as the 

coefficient of earth pressure at rest 𝐾0. The stress history of such soils can be reproduced in a 

conventional triaxial apparatus. Such tests often demonstrate a yield surface that is characterized by a 

rotated ellipse. Dafalias (1986) proposed a simple extension of the Modified Cam Clay (MCC) model that 

captures the anisotropic nature of the yield surface. Dafalias et al. (2006) further developed the model 

to capture the softening response of clays under drained and undrained loading following 𝐾0 

consolidation. Dafalias and Taiebat (2013) proposed a new rotational hardening rule for this model to 

capture a unique critical state line in e-p space. The model is called Simple Anisotropic Clay (SANICLAY). 

The main features of the model are: (1) a non-associated flow rule, (2) rotational hardening rules which 

leads to the evolving of the yield and plastic potential surfaces, (3) isotropic hardening of the yield 

surface stress plane.  

5.14.1 Formulation 

Figure 38 illustrates the elliptical yield surface and plastic potential surface of the SANICLAY model in the 

triaxial space 𝑝′ − 𝑞. As shown in Figure 38, the slope 𝛼 is the stress ratio 𝑞/𝑝′ that introduces 

anisotropy to the plastic potential surface. Similarly, the anisotropy of the yield surface is introduced by 

the slope 𝛽. The slope of the critical state line is denoted by M. It is worth noting that the deviatoric 

stress at the top of the yield surface corresponds to the stress ratio 𝑁, a model parameter. The isotropic 

hardening variable 𝑝0 is the value of 𝑝 at 𝜂 = 𝛽. The slope of the yield and plastic potential surfaces are 

assumed to be identical (i.e., 𝛼 = 𝛽) in Dafalias and Taiebat (2013).  

 

Figure 38. SANICLAY yield and plastic potential surfaces in triaxial stress space (after Dafalias et al., 2006).  

Appendix III provides a thorough description of SANICLAY’s formulation in generalized stress space. The 

model is more easily conceptualized by considering its formulation for triaxial stress space. SANICLAY’s 
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formulation reuses some of Modified Cam Clay’s foundation components, while adding crucial elements 

to account for anisotropy. As such, the yield surface, expressed in triaxial space, takes the following 

form: 

𝑓 = (𝑞 − 𝑝𝛽)2 − (𝑁2 − 𝛽2 )𝑝(𝑝0 − 𝑝) = 0 Equation 185 

 

If 𝛽 is taken as zero and 𝑁 is set equal to the critical state ratio 𝑀, Modified Cam Clay’s yield surface is 

obtained. The novel 𝛽 and 𝑁 parameters allow anisotropy and softening to occur. Similarly, the plastic 

potential surface, expressed for the triaxial space, is given as: 

𝑔 = (𝑞 − 𝑝𝛼)2 − (𝑀2 − 𝛼2 )𝑝(𝑝𝛼 − 𝑝) = 0 Equation 186 

By setting 𝛼 to zero and taking 𝑝α as equal to 𝑝0, the plastic potential surface becomes equivalent to the 

yield surface and Modified Cam Clay’s associated flow rule is recovered. 

5.14.2 Material parameters 

Dafalias et al. (2006) and Dafalias and Taiebat (2013) present two different rotational hardening rules for 

the SANICLAY model, both of which are implemented in the software. Table 14 presents the general 

model parameters and the unique parameters associated with the rotational hardening (RH) rule. The 

model parameters can be calibrated from conventional laboratory tests.  
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Table 14. Parameters for the SANICLAY model.  

Parameter RH 
(2006) 

RH 
(2013) 

Critical stress ratio in compression 𝑀𝑐 𝑀𝑐 

Critical stress ratio in extension 𝑀𝑒 𝑀𝑒 

Slope of normal compression line 𝜆 𝜆 

Slope of the unloading-reloading line 𝜅 𝜅 

Effective Poisson’s ratio  𝜈 𝜈 

Yield surface shape in compression 𝑁 𝑁𝑐 

Yield surface shape in extension = 𝑁 𝑁𝑒  

Saturation limit of anisotropy  𝑥 − 

Rotational hardening parameter  − 𝑠 

Rotational hardening parameter − 𝑧 

Rotational hardening parameter − 𝜉 

Rate of evolution of anisotropy 𝐶 𝐶 

Overconsolidation ratio  𝑂𝐶𝑅 𝑂𝐶𝑅 

Coefficient of earth pressure for the normally compressed state 𝐾0
𝑛𝑐 𝐾0

𝑛𝑐 

Initial void ratio 𝑒 𝑒 

 

In SANICLAY, the overconsolidation ratio 𝑂𝐶𝑅 is defined as the maximum vertical stress experienced by 

the soil in the past, divided by the current vertical stress.  

Table 15 presents the state parameters and stress ratio (𝜂/𝑀) that can be graphed and contoured to 

interpret the responses simulated by the SANICLAY model. The gradient of the yield and plastic potential 

surfaces (Table 15) are scalar representations of the tensors used to formulate and implement the 

model (Appendix III ). 

Table 15. Material state parameters definition for SANICLAY when drawing graphs. 

Parameter name Corresponding parameter 

Gradient of the yield surface 𝛽 

Gradient of the plastic potential surface 𝛼 

Size of the yield surface 𝑝0 

eta / M (mobilized strength) 𝜂/𝑀 

 

5.14.2.1 Initialization of the state parameters 

The SANICLAY model requires an input for the overconsolidation ratio 𝑂𝐶𝑅 (Equation 105) and 

coefficient of earth pressure for the normally compressed state 𝐾0𝑛𝑐. These inputs are used to establish 
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the maximum vertical and horizontal effective stresses and thus to establish the past maximum stress 

tensor. 

The past maximum stress tensor is in turn used to calculate the initial rotation of the yield surface and 

the initial rotation of the plastic potential surface. In the model with the 2006 hardening rule, the initial 

values of the tensors 𝛃 and 𝛂 are estimated as follows: 

𝛂 =
𝐫

𝑥
 ;  𝛃 = 𝐫  Equation 187 

While this estimation for the model with the 2013 hardening rule is: 

 𝛂 = 𝛃 = 𝛂𝑏 Equation 188 

In Equation 187 and Equation 188, 𝐫 is the deviatoric stress-ratio tensor of the past maximum stress 

state and 𝛂𝑏 is the bounding deviatoric stress tensor. The past maximum stress tensor is also used to 

define the corresponding deviatoric stress tensor, 𝐬. Having 𝐬 and the inital 𝛃 allows the equivalent 

isotropic hardening variable (i.e., 𝑝0) to be calculated from the yield function. 

It is worth noting that, for heavily over-consolidated soils, where the initial stress state may be located 

outside the estimated past yield surface, it is required to consider a rotation for the yield surface. This 

modification on the estimated past yield surface can be taken into account by updating the initial 

estimations of the deviatoric tensors 𝛂 and 𝛃 based on the initial stress state of the element. 

5.14.3 Conceptual response 

SANICLAY’s strength and uniqueness comes from its ability to account for soil anisotropy as 

consolidation and deformations occurs. At its core lies the elliptical yield surface of the Modified Cam 

Clay (MCC) model. As shown in Figure 39, during isotropic consolidation, from point A to point B, 

SANICLAY’s yield surface develops as a symmetrical ellipse. At this point, the only thing separating 

SANICLAY from MCC is the use of the parameter 𝑁 to size and shape the yield surface instead of the 

critical state ratio 𝑀 in MCC.  
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Figure 39. SANICLAY yield surface (YS) after isotropic consolidation. 

To see SANICLAY’s specificity in action, the stress path must depart from the isotropic axis, as shown in 

Figure 40, from point B to point C. This part of the stress path involves loading at constant mean 

effective stress. In doing so, the yield surface changes (expansion and rotation) from its isotropic shape 

(ellipse centered around 𝑞 = 0 𝑘𝑃𝑎, dashed light grey curve) to an anisotropic one (inclined ellipse, 

dashed blue curve). This yield surface evolution is driven by plastic strains, which in turn influence 𝑝0 

(size of the yield surface) and β (inclination of the yield surface). Similarly, plastic strains will also 

influence α and change the size and shape of the plastic potential surface (not displayed in Figure 40). 

 

Figure 40. SANICLAY’s yield surface (YS) after constant p’ loading. 
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Unloading at constant mean stress is shown in Figure 41, essentially retracing the previous loading stress 

path, from point C to point E (which coincides with point B). From point C to point D, only elastic strains 

would be produced, because the stress state lies inside the yield surface (dashed light red curve), and 

internal state parameters (α, β and 𝑝0) remain constant. Upon hitting the lower part of the yield surface 

at point D, plastic strains are produced which affects the state parameters and thus changes the yield 

surface’s size and orientation. When unloading ends at point E, the yield surface changed from the 

dashed light red curve to the dashed blue curve, showcasing the effect of hitting the lower part of the 

yield surface during unloading, and associated hardening.  

 

Figure 41. SANICLAY’s yield surface (YS) after constant p’ unloading. 

Also, it is interesting to note on Figure 41 how the yield surface retains its anisotropic shape developed 

through a past loading phase which involved deviatoric stresses. Although the stress state at point E is 

isotropic, the yield surface is inclined, showcasing how SANICLAY exhibits anisotropy through past 

loadings, which is similar to how real soils behave.  

5.15  NorSand Model  
NorSand is a soil model based on critical state soil mechanics. While the basic ideas behind the Cam Clay 

models are also part of NorSand, some important differences make the latter a much more capable soil 

model, especially for sand behaviour modelling. Having a good understanding of the former will help 

users better understand the latter. 

NorSand was developed during the 80’s and 90’s based on experience acquired with the construction of 

structures built on, or even made of, loose sands. The analysis of occurrences of static liquefaction 

during the construction of these structures contributed to the development of the model by Jefferies 

(1993). Many iterations of the model have since been proposed. The version built into SIGMA/W is 

primarily based on Jefferies & Been (2015), but also on Jefferies et al. (2015). 
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As its name implies, NorSand was mainly developed to model the behaviour of sands, loose and dense, 

in drained and undrained conditions. The model can successfully predict behaviours ranging from static 

liquefaction to very strong dilation with a constant set of input parameters, with only initial densities 

varying. In addition to its excellent performance for sand modelling, NorSand can also perform well for 

other soil gradations such as silts and tailings. And while there is no published data of the model being 

used to model clay behaviour, there is no reason why NorSand wouldn’t be adequate for such task 

(Jefferies et al., 2015), given its Cam Clay roots. 

5.15.1 Formulation 

A brief summary of the model’s formulation is presented in the following sections. Jefferies & Been 

(2015) provide a thorough description of model’s formulation and parameters.  

5.15.1.1 Elasticity 

NorSand considers isotropic elasticity, assuming a constant Poisson’s ratio (𝜈). The elastic shear (𝐺) and 

bulk (𝐾) moduli are calculated using the following equations, where 𝑝𝑟𝑒𝑓 is a reference stress generally 

taken as 100kPa, 𝐺𝑟𝑒𝑓 is the reference shear modulus at the reference stress and 𝑚 is a material 

constant. The elastic shear modulus can optionally vary via 𝐹(𝑒) as a function of the current void ratio if 

the material constant 𝑎  is defined. This modifier function accounts for the shape of the soil's grains. 

Various shapes of grains will impact how the shear modulus varies with regards to the void ratio. The 

constant 𝑎 will generally be equal to 2.97 for angular grains and 2.17 for round grains. Other values are 

also possible. 

𝐺 = 𝐺𝑟𝑒𝑓 𝐹(𝑒) (
𝑝′

𝑝𝑟𝑒𝑓
)

𝑚

,       𝐹(𝑒) =
(𝑎 − 𝑒)2

1 + 𝑒
 Equation 189 

𝐾 =
2(1 + 𝜈)

3(1 − 2𝜈)
𝐺 Equation 190 

 

Note that 𝑚 takes values between 0 and 1. A value of 𝑚 = 0 corresponds to a constant elastic shear 

modulus (𝐺 = 𝐺𝑟𝑒𝑓), while 𝑚 = 1 corresponds to an elastic shear modulus that is directly proportional 

to the current mean stress. Any value of 𝑚 in between these two extremes is also valid. 

The elastic strain increments are calculated as follows:  

𝑑ε𝑣
𝑒 =

𝑑𝑝′

𝐾
 Equation 191 

𝑑ε𝑞
𝑒 =

𝑑𝑞

3𝐺
 Equation 192 

5.15.1.2 Critical state 

The concept of critical state is cornerstone to NorSand’s formulation. There are two axioms to critical 

state: 1) for a given soil, a unique critical state exists; 2) soils will move toward their critical state when 



 

91 

sheared. For critical state to have been reached, dilation (the ratio of volumetric to deviatoric strain 

increments) must be zero and the rate of change of dilation must also be zero.  

The critical state line is most often defined by a straight line in a semi-ln space (𝑒 − ln(𝑝′)) as: 

𝑒𝑐 = 𝛤 − 𝜆 ln(𝑝′) Equation 193 

 

where Γ is the void ratio of the critical state line at 𝑝′=1kPa and λ is the slope of the critical state line. 

Another idealization for the shape of the critical state line is: 

𝑒𝑐 = 𝐶𝑎 − 𝐶𝑏 (
𝑝′

𝑝𝑟𝑒𝑓
)

 𝑐

 Equation 194 

 

where 𝐶𝑎, 𝐶𝑏 and 𝐶𝑐 are material parameters. When critical state is reached, the stress ratio 𝜂 = 𝑞/𝑝′ 

will reach the critical state ratio 𝑀, which is defined based on the Van Eekelen’s (1980) formulation as:  

𝑀 = 𝑀𝑐 (
1 + 𝛽 sin3𝜃

1 + 𝛽
)
𝑛

 Equation 195 

where 

𝑛 = −0.229 Equation 196 

𝛽 =
1 − 𝑘

1
𝑛

1 + 𝑘
1
𝑛

 Equation 197 

𝑘 =
3

3 + 𝑀𝑐
 Equation 198 

and where 𝑀𝑐 is the critical state ratio for triaxial compression condition and 𝜃 is Lode angle (Van 

Eekelen, 1980). 

5.15.1.3 State parameter 

An important concept underlying the NorSand model is the state parameter 𝜓 (Been & Jefferies, 1985), 

defined as the distance between a soil’s void ratio and the projected void ratio on its critical state line, at 

the same mean stress: 

𝜓 = 𝑒 − 𝑒𝑐 Equation 199 

 

The state parameter is a dual measure of density and stress level, built into one single parameter. A 

positive state parameter indicates a looser soil that will generally contract when sheared. A negative 

state parameter indicates a denser soil that will generally dilate when sheared.  
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5.15.1.4 Yield surface 

In the same way Cam Clay uses the critical state ratio 𝑀 and the preconsolidation stress 𝑝0
′  to control 

the shape and size of its yield surface, NorSand uses the critical state ratio and mean stress at image 

condition, 𝑀𝑖 and 𝑝𝑖
′ (the image condition is described below), to define its yield surface: 

𝐹 = 𝜂 − 𝑀𝑖 [1 − ln (
𝑝′

𝑝𝑖
′)] Equation 200 

 

In the 𝑝′ − 𝑞 plane, NorSand’s yield surface adopts a teardrop shape, similar to the original Cam Clay 

model (see Figure 42) where the top of the yield surface is positioned according to the critical state ratio 

at the image condition 𝑀𝑖. The position of the internal cap (not treated as part of the yield surface in 

SIGMA/W) is linked to the limiting stress ratio 𝜂𝐿, as defined further on, and controls the maximum 

allowable dilatancy. 

 

Figure 42. NorSand's yield surface in the p’ – q plane. 
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The NorSand yield surface represented in three-dimensional stress space and a cross-section taken in the π-plane are shown 

in 

 

Figure 43. NorSand’s dependency on the Lode angle value is apparent when the yield surface is plotted 

in the π-plane.  
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Figure 43. NorSand's yield surface in three-dimensional space and in the 𝛑-plane. 

5.15.1.5 Image condition 

The image condition is used throughout NorSand’s formulation as a reference condition towards which 

many parameters are projected. The image condition refers to a specific point during loading where one 

of the two requirements to have reached the critical state is met, but not the other. Specifically, when 

dilation is zero but the rate of change of dilation is not. For example, the image condition arises exactly 

at the point where a dense sand transitions from contraction to dilation during shearing. The image 

condition occurs exactly at the top of NorSand’s yield surface, where plastic dilatancy is zero, by 

definition (see Figure 42). 

The mean stress at image condition (𝑝𝑖
′) is defined using the yield surface definition, as:  

𝑝𝑖
′ = 𝑝′ exp (

𝜂

𝑀𝑖
− 1) Equation 201 

 

The state parameter at image condition (𝜓𝑖) is in turn defined using the mean stress at image condition. 

For the semi-log idealization of the critical state line, the definition would be: 

𝜓𝑖 = 𝑒 − [Γ − λ ln(𝑝𝑖
′)] Equation 202 

 

Finally, the critical state ratio at image condition (𝑀𝑖) is defined as follows, where 𝑁 is the volumetric 

coupling coefficient and χ𝑖 is defined below: 
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𝑀𝑖 = 𝑀(1 −
𝑁χ𝑖|𝜓𝑖|

𝑀𝑐
) Equation 203 

 

As suggested by Jefferies & Been (2015), Equation 203 only applies to dense soils and 𝑀𝑖 = 𝑀 for loose 

soils (when 𝜓 > 0). 

The state-dilatancy parameter χ𝑐 is an important NorSand parameter which relates the maximum 

dilatancy allowable to the current state. Its triaxial condition value is used as a reference to calculate the 

state-dilatancy parameter at image condition (χ𝑖): 

𝜒𝑖 =
𝜒𝑐

1 −
𝜒𝑐𝜆
𝑀𝑐

 
Equation 204 

5.15.1.6 Hardening rule 

Once a soil’s state lies on the yield surface and further plastic strains are induced, the yield surface must 

harden to accommodate the new stress state. NorSand’s hardening rule is expressed as follows: 

𝑑𝑝𝑖
′

𝑝𝑖
′ = (𝑋𝐻𝑎𝑟𝑑 + 𝑋𝑆𝑜𝑓𝑡)𝑑𝜀𝑞

𝑝
 Equation 205 

 

The first term (i.e., 𝑋𝐻𝑎𝑟𝑑) is the original NorSand hardening rule, where the difference between the 

maximum allowable dilatancy and the current yield surface position is used to scale the intensity of the 

hardening: 

𝑋𝐻𝑎𝑟𝑑 = 𝐻
𝑀𝑖

𝑀𝑖,𝑐
(
𝑝′

𝑝𝑖
′)

2

[(
𝑝𝑖

′

𝑝′)
𝑚𝑎𝑥

−
𝑝𝑖

′

𝑝′
] Equation 206 

 

Equation 206 is scaled by the plastic hardening modulus 𝐻 

𝐻 = 𝐻0 − 𝐻𝑦𝜓 Equation 207 

where 𝐻0 is the basic plastic hardening modulus and 𝐻𝑦 is an optional parameter to induce a 

dependency on 𝐻 towards the state parameter 𝜓. 

The maximum allowable dilatancy, which also positions the yield surface’s internal cap, is calculated as: 

(
𝑝𝑖

′

𝑝′)
𝑚𝑎𝑥

= exp(−
χ𝑖𝜓𝑖

𝑀𝑖,𝑐
) Equation 208 

Where 𝑀𝑖,𝑐 is the image stress ratio at Triaxial compression condition. 

The second term of NorSand’s hardening rule (i.e., 𝑋𝑆𝑜𝑓𝑡) brings additional softening that can be scaled 

by the index 𝑆 (where 𝑆 = 0 turns the feature completely off, which is the default value): 
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𝑋𝑆𝑜𝑓𝑡 = 𝑆
−1

χ𝑖𝜆
𝑀𝑖,𝑐

+ 1
𝐷𝑝 (

𝐾

𝑝
) (

𝜂

𝜂𝐿
) 

Equation 209 

 

This additional softening is appropriate for undrained loading of loose soils, as such it is internally shut 

off for any drained or dense undrained NorSand material (𝜓 < 0). Values of 𝑆 between 0 and 1 should 

be used.  

In Equation 209, 𝐷𝑝 is the plastic dilatancy and 𝜂𝐿 is the limiting stress ratio, corresponding to the 

junction between NorSand’s yield surface and its internal cap (see Figure 42): 

𝐷𝑝 =
𝑑𝜀𝑣

𝑝

𝑑𝜀𝑞
𝑝 = 𝑀𝑖 − 𝜂 Equation 210 

𝜂𝐿 = 𝑀𝑖 (1 −
χ𝑖𝜓𝑖

𝑀𝑖,𝑐
) Equation 211 

5.15.1.7 Failure 

SIGMA/W offers the possibility of identifying which elements are failed within any simulation (via the 

“Draw Plastic States” tool). For non-linear elasto-plastic constitutive models such as NorSand, the 

concept of failure is not as easily defined as for Mohr-Coulomb for example (where an element is either 

failed or not, nothing in between). The critical state could represent that failure condition, however, 

reaching critical state exactly is most often not numerically feasible. As such, a custom failure condition 

was defined for NorSand which tries to identify when an element is sufficiently close to its critical state 

so that it can be considered failed. Similar to the actual critical state condition, two distinct conditions 

must be simultaneously met for an element to be considered failed: 

a) |ψ| < 0.001 

b) |η − 𝑀𝑖| < 0.1 

 

This custom failure condition is solely used as a visual aid to graphically identify which elements are 

failed and which aren’t in any given simulation. The failure condition does not affect the calculated 

response in any way. 

5.15.2 Material parameters 

NorSand being a relatively simple soil model, the number of model parameters required for simulation is 

also relatively modest, as shown in Table 16. At minimum, NorSand requires eight parameters to 

function, only three of which are specific to NorSand: two for elasticity (𝐺𝑟𝑒𝑓 and 𝜈, setting 𝑚 at either 0  

for constant 𝐺 or 1 for stress-dependant 𝐺), two for the critical state locus (Γ and 𝜆) and four for 

plasticity (𝑀𝑐, 𝜒𝑐, 𝑁 and 𝐻0).  

The other model parameters shown in Table 16 can be used to tailor NorSand for specific needs: 𝑚 and 

𝑎 to better fit elastic behaviour measures, 𝐶𝑎, 𝐶𝑏 𝑎𝑛𝑑 𝐶𝑐   to define the critical state locus by a curve. In 
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addition, 𝐻𝑦 to infer a dependence on 𝐻 towards 𝜓  and finally 𝑆 to provide additional softening for 

undrained loading of loose soils.  

Input parameters needed for NorSand can be calibrated using standard drained and undrained triaxial 

compression tests (three tests of each type will generally provide a reasonable calibration). NorSand’s 

easy calibration represents one of the core qualities of the model.  

Table 16 includes the initial condition parameters required to initialize the model: the initial void ratio 𝑒 

(or initial state parameter) and overconsolidation ratio 𝑂𝐶𝑅. In the NorSand model, the 𝑂𝐶𝑅 is used to 

find the past maximum size of the yield surface (i.e., 𝑝𝑖,𝑚𝑎𝑥
′ ):  

𝑝𝑖,𝑚𝑎𝑥
′ = (𝑂𝐶𝑅)𝑝𝑖,0

′  Equation 212 

where 𝑝𝑖,0
′  is the size of the yield locus passing through the current stresses. From Equation 200: 

𝑝𝑖,0
′ = 𝑝0

′ exp(
𝑞0

𝑀𝑖𝑝0
′ − 1) Equation 213 

 

where 𝑝0
′  and 𝑞0 in Equation 213 are initial values of mean effective stress and deviatoric stress, 

respectively. 
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Table 16. Parameters for the NorSand model. 

Model parameters Symbol Unit 

Elastic shear modulus at reference stress 𝐺𝑟𝑒𝑓 kPa 

Reference stress (default value=100kPa) 𝑝𝑟𝑒𝑓 kPa 

Elastic exponent  𝑚  

Constant to relate the elastic shear modulus to the void ratio (optional) a  

Effective Poisson’s ratio  𝜈  

Semi-Ln critical state locus Altitude of critical state line at 𝑝′ = 1𝑘𝑃𝑎 𝛤  

Slope of critical state line (base 𝑒) 𝜆  

Curved critical state locus Critical state coefficient 𝐶𝑎  

Critical state coefficient 𝐶𝑏  

Critical state coefficient 𝐶𝑐  

Critical state ratio, referenced for triaxial compression conditions 𝑀𝑐  

State-dilatancy parameter, reference for triaxial compression 
conditions 

𝜒𝑐   

Volumetric coupling coefficient  𝑁  

Plastic hardening modulus  𝐻0  

Evolution hardening modulus 𝐻𝑦  

Additional softening parameter 𝑆  

Initial conditions 

Initial void ratio OR Initial state parameter 𝑒 or 𝜓 
 

 

Overconsolidation ratio 𝑂𝐶𝑅  

Table 17 presents the state parameters and stress ratio (𝜂/𝑀) that can be graphed and contoured to 

interpret the responses simulated by the NorSand model. 

Table 17. Material state parameters definition for NorSand when drawing graphs. 

Parameter name Corresponding parameter 

Size of the yield surface 𝑝𝑖  

Critical state ratio at image condition 𝑀𝑖 

State parameter 𝜓 

eta / M (mobilized strength) 𝜂/𝑀 

 



 

99 

5.15.3 Conceptual response 

NorSand’s constitutive equations were presented in Section 5.15.1, where focus was put on formulation 

rather than conceptualization. Some examples are provided in this section to help users better 

understand how the model functions.  

A drained triaxial compression test simulated with NorSand is shown in Figure 44 for a hypothetical 

dense sand (𝜓0 < 0). Some points of interest in the test are identified with letters in the figure. At the 

start of the test (point 𝐴), the sample is overconsolidated, as the stress point lies inside the yield surface 

(red curve, Figure 44b, note that on this part of the figure, the stress path is denoted by the blue line, 

while yield surfaces associated to various loading points are denoted by colored curves). The loading is 

thus elastic from point 𝐴 to point 𝐵, with little deformations being produced (Figure 44c). As the stress 

state touches the yield surface (point 𝐵), the loading becomes elasto-plastic, which pushes the yield 

surface to harden. The loading will then proceed to push the yield surface further to accommodate 

stress states that would lie outside of its boundaries. The sample being dense, dilation is initially positive 

(Figure 44d), which will produce positive volumetric strains (volumetric contraction, Figure 44c). At point 

𝐶, the loading passes the image condition (where 𝐷𝑝 is momentarily zero, Figure 44d, with the stress 

point lying exactly on top of the yield surface, yellow curve in Figure 44d). The image condition sparks a 

new trend in volumetric behaviour, as the sample will now on dilate. At point 𝐷, the sample reaches its 

peak strength (highest deviatoric stress 𝑞, Figure 44a, largest yield surface, purple curve in Figure 44b), 

which corresponds to the maximum negative dilation reached (Figure 44d). As the sample moves closer 

to its critical state (approximately reached at point 𝐸, green yield surface, Figure 44b), dilation will 

approach zero (Figure 44d) and no further volumetric strains will be produced (Figure 44c). 
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Figure 44. Drained triaxial compression as described by the NorSand model: (a) stress – strain plot; (b) stress path plot with 
associated yield surfaces; (c) volumetric strain plot; (d) stress ratio – plastic dilation plot. 

In another example, three different hypothetical undrained triaxial compression tests modelled with 

NorSand are shown in Figure 45, again with various points of interest being identified via letters. All 

tests shown are normally consolidated. The blue line refers to a dense sample (𝜓0 < 0), which starts its 

loading at point 𝐴. Similar to the results shown in Figure 44, the dense sample initially contracts 

(diminution of state parameter value, Figure 45d, augmentation of pore water pressure, Figure 45c) 

until the image condition is reached at point 𝐵. Onwards, plastic dilation will be negative and pore water 

pressure will decrease (Figure 45c), which will bring the sample’s stress state towards higher values of 

effective stresses (Figure 45b). The sample will reach its critical state at large deformations (Figure 45a), 

approximately at point 𝐶. 
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Figure 45. Undrained triaxial compression as described by the NorSand model: dense sample (blue curve), loose sample with 
𝑺 = 𝟎 (red curve) and 𝑺 = 𝟏 (yellow curve); (a) stress – strain plot; (b) stress path plot; (c) excess pore pressure – strain plot; 
(d) state parameter – strain plot. 

The red and yellow curves shown in Figure 45 relate to a hypothetical loose sample (𝜓0 > 0) being 

sheared, with the additional softening turned off (red curve, 𝑆 = 0) and on (yellow curve, 𝑆 = 1). Both 

samples start loading at point 𝐷 (same state parameter, Figure 45d) and end at point 𝐸. The additional 

softening available in NorSand (Equation 209) for loadings of undrained loose soil causes the yellow 

sample to generate excess pore water pressure quickly (Figure 45c) and lowers the peak resistance 

developed (Figure 45a). At large deformations, both samples will reach the same deviatoric stress 

(Figure 45a) and pore water pressure (Figure 45c), which makes their stress paths coincide on point 𝐸. 

As critical state is nearing, all samples, loose and dense, will see their state parameter tend to zero 

(points 𝐶 and 𝐸 in Figure 45d). 

As was demonstrated with the examples presented herein, NorSand is effectively capable of modelling 

diverse stress-strain behaviours of sands, which range from very dilative (Figure 44, blue curve in Figure 

45) to very contractive (red and yellow curves in Figure 45). Those seeking to understand the role each 

parameter plays within the model are encouraged to simulate the response of hypothetical soils under 

simple loading conditions (triaxial compression is suggested for such purpose).  

5.16  Soft Soil Model 
The Soft Soil model was primarily developed for simulating the response of highly compressible soils 

such as normally consolidated clays and clayey silts (PLAXIS 2017). This constitutive model is formulated 

within the generalized elastic-plastic framework (Section 3.4) and takes advantage of some features of 

the Modified Cam Clay model (Section 5.13). 

Numerous modifications have been proposed to the Modified Cam Clay model since its inception. Many 

of these modifications have been concerned with the overestimation of failure stresses on the 

supercritical (dry) side of the elliptical yield surface. Zienkiewicz and Naylor (1973), for example, 

adopted a linear Hvorslev surface on the supercritical side that passed through the peak of the elliptical 

yield surface. Di Maggio and Sandler (1971) and Sandler et al. (1976) proposed ‘Cap models’ in which the 
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elliptical yield surface hardened with plastic volumetric strain while the failure surface remained fixed. 

The Soft Soil model implemented in SIGMA/W is similarly formulated to deal with stresses in the 

supercritical region of the yield surface. 

5.16.1 Formulation 

The Soft Soil model includes an elliptical yield surface with a horizontal major axis (Figure 46). The flow 

rule is assumed to be associated and the failure criterion is the van Eekelen (1980) extension of the 

Mohr-Coulomb failure criterion. 

 

Figure 46.  Yield surface and failure line in the Soft Soil model 

5.16.1.1 Isotropic behaviour 

The soil behaviour during isotropic unloading and reloading is assumed to be elastic based on Hooke’s 

law. The unloading-reloading bulk modulus 𝐾𝑠 is defined as: 

𝐾𝑠 =
𝑝𝑝

′ + 𝑐′ cot𝜙′

𝜅∗
 Equation 214 

where 𝑝𝑝
′  represents the isotropic effective stress, 𝑐′ and 𝜙′ are the effective cohesion and the effective 

friction angle, respectively, and the parameter 𝜅∗ is the modified swelling index. A similar linear stress 

dependency is also assumed for the elastic-plastic bulk modulus 𝐾𝑐, so that: 

𝐾𝑐 =
𝑝𝑝

′ + 𝑐′ cot𝜙′

𝜆∗
 Equation 215 

where the parameter 𝜆∗ is the modified compression index. The linear behavior of the sample in the 

semi-log stress-strain space is shown in Figure 47. 

Elastic zone
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Figure 47.  Logarithmic relation between volumetric strain and isotropic effective stress 

The plastic bulk modulus of the sample (i.e., 𝐻) is expressed in the Soft Soil model in terms of the elastic 

and elastic-plastic bulk moduli: 

1

𝐻
=

1

𝐾𝑐
−

1

𝐾𝑠
 Equation 216 

 

which conceptually represents the elastic-plastic stiffness of the sample (𝐾𝑐) as an equivalent spring 

stiffness resulting from the elastic (𝐾𝑐) and plastic (𝐻) springs in series. Substitution of Equation 214 

and Equation 215 into Equation 216 gives:  

𝐻 =
𝐾𝑐

𝐾𝑠 − 𝐾𝑐
𝐾𝑠 =

𝑝𝑝
′ + 𝑐′ cot𝜙′

𝜆∗ − 𝜅∗
 Equation 217 

 

5.16.1.2 Failure law 

The failure criterion adopted by the Soft Soil model is the van Eekelen (1980) extension of the Mohr-

Coulomb failure law:  

𝐹 = 𝑞 − 𝑔(𝜃)
6 sin𝜙′

3 − sin𝜙′ (𝑝
′ + 𝑐′ cot𝜙′

) = 0 Equation 218 
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where 𝑞 and 𝑝′ are generalized stress invariants (Section 3.2), 𝜃 is the Lode angle, and 𝑔(𝜃) represents 

the van Eekelen function (see Equation 151). 

5.16.1.3 Cap yield function 

The cap yield surface is described by the equation of an ellipse when written in terms of stress invariants 

(see Figure 46): 

𝑓 =
𝑞2

𝑀2𝑔2(𝜃)(𝑝′ + 𝑐′ cot𝜙′
)
+ 𝑝′ − 𝑝𝑝

′  Equation 219 

where 𝑀 is a constant that determines the aspect ratio of the ellipse. The plastic potential function is 

obtained by assuming associated flow rule; therefore, the plastic potential function is also identical to 

the yield function given by Equation 219. The parameter 𝑀 is derived in terms of the other model 

constants: 

𝑀 = 3√(
1 − 𝐾0

𝑁 

1 + 2𝐾0
𝑁 )

2

+
𝜆∗ − 𝜅∗

1 + 2𝐾0
𝑁 

1 − 𝐾0
𝑁 𝜆∗ −

1 + 𝜈′

1 − 2𝜈′ 𝜅
∗

 
Equation 220 

where 𝐾0
𝑁  represents the coefficient of lateral pressure in a one-dimensional compression loading on a 

normally consolidated soil, and 𝜈′ is the Poisson’s ratio in unloading-reloading. 

5.16.1.4 Initialization of State Parameters 

The Soft Soil model, like the modified Cam clay and Hardening Soil models, requires an input for the 

isotropic over-consolidation ratio (𝑂𝐶𝑅), which is defined as:  

𝑂𝐶𝑅 =
𝑝𝑝,𝑚𝑎𝑥

′

𝑝𝑝,𝑖
′  Equation 221 

 

where 𝑝𝑝,𝑚𝑎𝑥
′  is the past maximum value of the equivalent isotropic stress and 𝑝𝑝,𝑖

′  is the current, or 

initial, equivalent isotropic stress (refer to Figure 35, noting the difference in the subscripts). The initial 

equivalent isotropic stress 𝑝𝑝,𝑖
′  is given in terms of initial invariants using Equation 219: 

𝑝𝑝,𝑖
′ = √

𝑞𝑖
2

𝑀2𝑔2(𝜃𝑖)(𝑝𝑖
′ + 𝑐′ cot𝜙′

)
+ 𝑝′

𝑖
2 Equation 222 

 

The past maximum value of the equivalent isotropic stress is then calculated as: 

𝑝𝑝,𝑚𝑎𝑥
′ = (𝑂𝐶𝑅)𝑝𝑝,𝑖

′  Equation 223 
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5.16.2 Material Parameters 

Table 18 provides a summary of the required parameters for the Soft Soil model. 

Table 18.  Parameters for the Soft Soil Model 

Parameter Symbol Unit 

Effective friction angle 𝜙′ ° 

Effective cohesion 𝑐′ kPa 

Angle of dilation 𝜓 ° 

Over consolidation ratio 𝑂𝐶𝑅  

Coefficient of earth pressure for the normally compressed state 𝐾0
𝑁   

Poisson’s ratio  𝜈′  

Modified swelling index 𝜅∗  

Modified compression index 𝜆∗  

 

Table 19 provides relationships to assist with conversion between the modified swelling and 

compression indices and their original counterparts from the modified Cam Clay model. Approximate 

relationships are also included to relate to the compression index (see Table 13 for important notes 

regarding the latter).  

Table 19. Relationships between modified Cam clay material parameters and other commonly measured quantities.  

Parameter Relationship 

𝜅∗ κ∗ =
κ

1 + e
 

 
𝜅∗ ≈

2𝐶𝑐

(1 + 𝑒) ln 10
 

𝜆∗ 
𝜆∗ =

𝜆

1 + 𝑒
 

 
𝜆∗ =

𝐶𝑐

(1 + 𝑒) ln 10
 

 

Conceptual Response 

The key aspects of the Soft Soil model formulation and its parameters were presented in Sections 5.16.1 

and 5.16.2. In this section, the main features of the Soft Soil model are explored by considering triaxial 

test simulations.   

Figure 48 depicts the conceptualized simulated results of a conventional drained triaxial test on an 

overconsolidated material represented by the Soft Soil model. Point 𝑆 represents the state of the 
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sample at the start of shearing. As shown in Figure 48a, the soil behavior is assumed to be linear elastic 

as long as the stress state is located inside the elliptical yield surface. The modified swelling index (i.e., 

𝜅∗) determines the stiffness of the sample during this elastic loading stage (Figure 48c). The elastic-

plastic non-linear response begins when the stress path intersections the yield surface at point 𝑌 (Figure 

48b). The simulated response during this stage of loading corresponds to that of a normally consolidated 

soil. The elliptical (cap) yield surface expands as the stress path progresses towards the failure surface 

(Figure 48a). Failure occurs at point 𝐹 where the stress state reaches the Mohr-Coulomb failure line. The 

axial strain continues after failure occurs in a constant-volume manner (Figure 48b and Figure 48d). 

 

 
Figure 48. Conventional drained triaxial compression test on an over-consolidated soil described by the Soft Soil model: (a) 
𝒑′ − 𝒒 effective stress plane; (b) 𝒒 − 𝜺𝟏 stress-strain plot; (c) 𝜺𝒗  − 𝐥𝐧(𝒑′ + 𝒄′𝐜𝐨𝐭𝝓′) compression plane; (d) 𝜺𝒗 − 𝜺𝟏 volume-
strain plot. 

Figure 49 depicts the conceptualized simulated results of a conventional drained triaxial test on a 

normally compressed material represented by the Soft Soil model. The stress state at the start (S) of the 

loading (Point 𝑆) is located on the yield surface (Point Y). During drained triaxial loading, the yield 

surface expands, and the non-linear response lasts until the stress path touches the Mohr-Coulomb 

failure line at point 𝐹 (Figure 49a). 
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Figure 49. Conventional drained triaxial compression test on a normally consolidated soil described by the Soft Soil model: 
(a) 𝒑′ − 𝒒 effective stress plane; (b) 𝒒 − 𝜺𝟏 stress-strain plot; (c) 𝜺𝒗  − 𝐥𝐧(𝒑′ + 𝒄′𝐜𝐨𝐭𝝓′) compression plane; (d) 𝜺𝒗 − 𝜺𝟏 
volume-strain plot. 

 

Figure 50 depicts the conceptualized simulated results of a conventional undrained triaxial test on an 

overconsolidated material represented by the Soft Soil model. During the first stage of loading – that is, 

from point 𝑆 to yield at point 𝑌 – the size of the yield surface is fixed, and the stress path is located 

entirely within the elastic zone (Figure 50a). The changes in pore pressure are equal to the change in 

mean total stress (Figure 50c); consequently, the mean effective stress does not change, and the stress 

path tracks vertically (Figure 50a). The slope from S to Y in Figure 50b is equal to 3𝐺, where the shear 

modulus can be related to the bulk modulus (Equation 214) by Equation 26 and Equation 28. There is a 

sharp decrease in stiffness when yielding begins at point Y (Figure 50b) because of the addition of plastic 

strains. The additional tendency for plastic volumetric compression produces an addition component to 

the pore pressure increase, causing the stress path to turn to the left (Figure 50a). In addition, there is a 

kink in the pore pressure vs mean effective stress and axial strain plots (see Figure 50c and Figure 50d). 

These trends continue until the critical state is reached; that is, when failure occurs at point 𝐹. 
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Figure 50. Conventional undrained triaxial compression test on an over-consolidated soil described by the Soft Soil model: (a) 
𝒑′ − 𝒒 effective stress plane; (b) 𝒒 − 𝜺𝟏 stress-strain plot; (c) 𝒖 − 𝒑′ pore pressure-stress plot; (d) 𝒖 − 𝜺𝟏 pore pressure-
strain plot. 

The Soft soil model simulates the same undrained response in normally consolidated soils, except that 

there is no elastic stage in the response of normally consolidated samples (Figure 51). In other words, 

the stress state is located on the yield surface when deviatoric loading initiates.  
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Figure 51. Conventional undrained triaxial compression test on a normally consolidated soil described by the Soft Soil model: 
(a) 𝒑′ − 𝒒 effective stress plane; (b) 𝒒 − 𝜺𝟏 stress-strain plot; (c) 𝒖 − 𝒑′ pore pressure-stress plot; (d) 𝒖 − 𝜺𝟏 pore pressure-
strain plot. 

6 Structural Components 
Section 3.8 provides a brief overview of the key concepts pertaining to the formulation of structural 

elements. The following sections define the constitutive law that relates the strain increments to the 

element forces and, in some instances, bending moments for each structural component. The 

constitutive law reveals the properties required to parameterize the response of the structure in a 

stress-strain analysis.  

6.1 Pin-Ended Bar 
A pin-ended bar can be used to represent structures such as a prop, the free length of an anchor, or an 

end bearing pile. The pin-ended bar can be conceptualized as a spring between two nodes, hence it is 

sometimes referred to as a node-to-node anchor. A pin-ended bar is applied to a line, forming a one-

dimensional structure within a two-dimensional domain. The constitutive law for a pin-ended bar in a 

2D plane strain simulation is given as: 

𝛿𝑁1 = [𝐸𝐴]{𝛿𝜀1} Equation 224 
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where 𝛿𝑁1 and 𝛿𝜀1 are the axial force and axial strain increments, respectively. Table 20 presents the 

inputs for a pin-ended bar. The spacing is the out-out-plane installation distance.  

Table 20. Parameters for pin-end bar. 

Parameter Symbol Unit 

Spacing 𝑠 𝑚 

Elastic Modulus 𝐸 𝑘𝑃𝑎 

Cross-sectional Area 𝐴 𝑚2 

Pre-Axial Force  𝑘𝑁 

6.1.1 Prestressed Bar 

SIGMA/W assumes that a structural bar is prestressed if the pre-axial force input is non-zero. 

Prestressing results in a force boundary condition applied at the end-points of a structural bar. Prestress 

forces are applied on the first load/time step of an analysis. A bar should not be prestressed if other 

loads are applied to the domain, including via region activation or deactivation. 

6.2 Beam 
The beam element is formulated based on Timoshenko beam theory, which considers the shear 

deformations and rotational bending effects. Taking into account the added mechanism of deformation 

effectively lowers the stiffness of the beam, which results in a larger deflection under a static load when 

compared to an element formulated based on Euler-Bernoulli beam theory. Timoshenko beam theory 

converges towards Euler-Bernoulli beam theory if the shear modulus approaches infinity, making the 

beam rigid in shear. The maximum deflection of a cantilevered beam with a single load can be simulated 

in accordance with ordinary beam theory by artificially increasing the axial stiffness, and therefore the 

shear resistance.  

A beam is used in a plane strain (2D) analysis to model structures that have axial stiffness, resistance to 

shear and bending. A beam is applied to a line, forming a one-dimensional element within a two-

dimensional domain. The constitutive law is given as: 

{

𝛿𝑁1

𝛿𝐹12

𝛿𝑀3

} = [
𝐸𝐴 0 0

𝑘𝐺𝐴
𝐸𝐼

] {𝛿
𝛿𝜀1
𝛾12

𝛿𝜅3

} Equation 225 

 

where ∆𝐹12 is the shear force, 𝛾12 the shear strain, and 𝑀3 and 𝜅3 are the bending moment and bending 
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strain, respectively. Beams cannot be used in axisymmetric analyses. Table 21 presents the inputs 

required for a beam. The stiffness and capacity values are normalized by spacing at solve-time in the 

same manner as a bar.  

Table 21. Parameters for a beam. 

Parameter Symbol Unit 

Spacing 𝑠 𝑚 

Elastic Modulus 𝐸 𝑘𝑃𝑎 

Cross-sectional Area 𝐴 𝑚2 

Moment of Inertia 𝐼 𝑚4 

 

7 Boundary Conditions 
The solution of the finite element equations is constrained by boundary conditions (Appendix I ). The 

fundamental boundary conditions for a stress-strain analysis are force and displacement. Displacement 

boundary conditions must be applied to the domain in a manner that limits rigid body deformation of 

the entire finite element mesh. If these conditions are not satisfied, the global stiffness matrix will be 

singular and the equations cannot be solved. Stated another way, sufficient displacement boundary 

conditions must be applied to maintain equilibrium of the system.  

For a three-dimensional analysis, there are three degrees-of-freedom at every node with the 

displacements given as: 

{𝛿𝑢}𝑇 = {𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧} Equation 226 

 

and the nodal forces given by: 

{𝛿𝐹}𝑇 = {𝛿𝐹𝑥 𝛿𝐹𝑦 𝛿𝐹𝑧} Equation 227 

 

Stress-strain constitutive relationships (Equation 10) link infinitesimal changes in stress and strain. 

Accordingly, the displacement and force boundary conditions are incremental. The basic boundary 

conditions are generally self explanatory and the means of defining them are described in the example 

files and tutorials. However, the more complex boundary conditions merit further discussion and are 

described in the following sections.  
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7.1 Prescribed Displacements 
A displacement boundary condition imposes the movement of a node for the various degrees-of-

freedom. A constant displacement boundary condition is applied on each load step and time step for 

Load-Deformation and Consolidation analyses, respectively. A step function must therefore be defined if 

the displacement is to be applied on the first step of an analysis with multiple load-steps. Displacement 

boundary conditions can be applied to points, lines, and regions.  

7.2 Boundary Stresses 
Stress boundary conditions are converted to equivalent nodal forces via formal numerical integration 

over the area of an element. Consider for example the normal stress and shear stress boundary 

conditions applied to the line segments in Figure 52. Integration of the normal stress will result in an 

apportioning of a y-force to each node under the generalized stress distribution (edge 1-5). Similarly, 

numerical integration of the shear stress will produce an x-force at each node along edge 5-6. Stress 

boundary conditions are useful for modelling external loads on the system that do not need to be 

represented by a region. Stress boundary conditions can be applied to lines and regions. Finally, a stress 

boundary function must be used for Load-Deformation and Coupled Consolidation analyses if the load is 

to be applied on the first step only.  

 

Figure 52. Example of stress boundary conditions. 

7.2.1 Hydrostatic Pressure 

The presence of a fluid surcharge load on the ground surface increases the total stress within the 

domain (Figure 53). This condition is handled in SIGMA/W through the use of a hydrostatic pressure 

boundary condition. The inputs include the elevation of the fluid surface and the unit weight of the fluid. 

SIGMA/W automatically applies the stress boundary normal to the ground surface. The fluid elevation 

can be defined as a function of time for a Coupled Consolidation analysis.  

Normal Stress

Shear Stress
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Figure 53. Example of a hydrostatic boundary condition. 

7.3 Construction and Excavation 
Many geotechnical problems involve placing new material or removing existing material. For example, 

building an embankment or backfilling behind a retaining wall both involve placing material on a pre-

existing geometry. Similarly, material is removed for the construction of a deep foundation or tunnel. 

These two scenarios are handled in SIGMA/W through material activation and deactivation.  

Material activation is similar to the Gravity Activation analysis described in Section 4.1.2. The activation 

of a new material is manifest in a body force boundary condition for regions that become active for the 

first time. Consider, for example, the embankment construction problem shown in Figure 54. The 

embankment construction is sub-divided into five stages. The geometry and elements representing the 

embankment are present in the original (i.e. Parent) SIGMA/W analysis, but a material has not been 

applied to these regions. The application of a material to a region produces a body force boundary 

condition for the load step. In a subsequent analysis, a new layer becomes active while the first layer is 

now fully present in the analysis  

 

Figure 54. An example of material activation. 

Material deactivation involves determining the reaction forces acting on boundaries of regions that are 

to be deactivated (excavated). When a region becomes deactivated, opposing reaction forces are 

applied as boundary conditions to the adjacent active region boundaries. Material deactivation requires 

the finite element mesh to be present and active in the original (i.e. Parent) SIGMA/W analysis. 
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Figure 55. An example of material deactivation. 

The material activation and deactivation procedure for modeling construction and excavation is 

summarized as follows: 

1. The geometry must include all regions for the construction and/or excavation sequence; 

2. The activation boundary condition is automatically assembled when a material is applied to a 

region that was previously inactive; 

a. The activation boundary condition calculates the body force load in the same manner as 

a Gravity Activation analysis; 

3. The deactivation boundary condition is automatically applied when a material is removed from a 

region that was previously active; 

a. The deactivation boundary condition calculates a traction force that is based on the 

existing stresses at the excavation boundary; 

4. The displacements of nodes connected to inactive elements are zeroed until the element 

becomes active; and, 

5. The activation/deactivation procedure is applicable to Load-Deformation and Coupled 

Consolidation analysis types. 

7.3.1 Submerged Construction 

Submerged fill placement is a common class of problem in geotechnical engineering. The material 

activation procedure described above is used for analysing this scenario. In a load-deformation analysis, 

SIGMA/W automatically determines if the pore-water pressure at the ground surface of a newly 

activated region is positive. The buoyant unit weight is subsequently used to form the activation 

boundary condition. This procedure is not relevant in a consolidation analysis because the final pore-

water pressure condition is unknown, meaning that the submergence condition cannot be detected a 

priori.   

7.3.2 Submerged Excavation 

In contrast to submerged construction (Section 7.3.1), submergence is not automatically detected when 

a material is deactivated. Deactivation of a region removes the total unit weight of the material, making 

it necessary to apply a hydrostatic pressure boundary condition so that the net effect is commensurate 

with removing the buoyant unit weight of the material (Figure 56).  

  

Figure 56. Hydrostatic pressure boundary applied to the new ground surface to model a submerged excavation (right).  
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7.4 Pore-water Pressure Changes 
Pore-water pressure changes specified in a Load-Deformation analysis are accommodated by means of 

nodal force boundary condition, which is calculated as:  

𝑹 = ∑∫ 𝑆𝑒𝑩
(𝒎)𝑻{𝑚}𝛿𝑢𝑤𝑑𝑉(𝒎)

𝑉(𝑚)
𝑚

 
Equation 228 

 

where {𝑚}𝑇 = {1 1 1 0 0 0} and 𝑆𝑒 is the effective degree of saturation (Equation 88). The 

following should be noted:  

1. In an In Situ analysis, the pore-water pressure change 𝛿𝑢𝑤 is equal to the final pore-water 

pressures because the initial pore-water pressure is inherently zero for activated regions. 

2. In a Load-Deformation analysis, the pore-water pressure change 𝛿𝑢𝑤 is calculated as the 

difference between the final and initial values. The pore-water pressure increment is ignored if 

the Response Type is Undrained (Section 3.6.1). 

3. The effective degree of saturation (Equation 88) is calculated by numerically integrating the 

volumetric water content function over the change in negative pore-water pressure. 

4. In an In Situ or Load-Deformation analysis, an increment or decrement in the pore-water 

pressure is fully realized (𝛼 = 𝑆𝑒 = 1.0; Equation 88) if a volumetric water content function is 

not defined (Equation 52). 

5. A pore-water pressure increment could be negative or positive. The former leads to an increase 

in effective stress, while the latter produces a decrease in effective stress. 
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Appendix I  Formulation Fundamentals 
There have been many thorough textbooks written on the subject of the finite element method (e.g. 

Bathe, 2006; Zienkiewicz and Taylor, 1989). The method is mathematically elegant and generalized; 

however, the details of the derivations and implementation strategies can be overwhelming. As such, 

the objective of this appendix is to provide a basic overview of the method with the goal being to 

provide a framework for discussing other topics such as discretization, the need for a constitutive 

model, and boundary conditions.  

An analytical or closed-form solution of a physical problem always involves a few common steps. First, a 

set of mathematical equations must be derived to describe the physical process under consideration; 

commonly this takes the form of a partial differential equation (PDE) expressed in terms of some 

dependent variable. Next, the temporal and spatial limits of the problem (the domain over which the 

solution is sought) is defined and the appropriate boundary conditions which constrain the solution are 

defined. All parameters within the PDE must then be defined, including material properties used to 

characterize a particular material behavior. The solution of the PDE over the domain, given the specified 

material properties and subject to the selected boundary conditions, is the value of the dependent 

variable(s) as a function of position and time (in the case of a transient problem).  

A similar solution pattern is applied in the case of the FEM. A conceptual model of a physical system is 

developed, the relevant physics (PDE) are selected, and the domain for the solution is defined. Just as in 

the analytical solution, the material properties across the domain must be specified and boundary 

conditions must be applied to constrain the solution. The FEM is selected as a solution method, rather 

than an analytical solution, likely due to complexities in geometry or material behavior. In order to 

overcome these complexities, the FEM, essentially, ‘solves’ the governing equation over smaller ‘finite 

elements’ which have well defined geometry and have a pre-selected shape to the distribution of the 

dependent variable across the element. The PDE across an individual element is then described in terms 

of the values of the dependent variable at the element nodes (fixed positions within the domain). 

Solving for the common set of nodal values for all elements at the same time then results in the solution 

of the dependent variable across the domain (i.e. in space and time).  

As a consequence, the finite element method involves the following general steps:  

1. Discretization of the domain into finite elements; 

2. Selection of a function to describe how the primary variable(s) varies within an element; 

3. Definition of a constitutive relationship; 

4. Derivation of element equations; 

5. Assembly of the global equations and modification for boundary conditions; and, 

6. Solution of the global equations. 

The solution of the global equations, which is a solution to a partial differential equation, provides a 

spatial and temporal description of the primary variable (e.g. temperature or displacement) within the 

domain.  
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I.1 Governing Equation 

The governing partial differential equations for the stress-strain (Section 3.1) and water transfer (Section 

3.7) formulations are derived from the requirement for energy or mass conservation, respectively. The 

governing equation for the stress-strain formulation is fundamentally an energy (work) conservation 

statement that is conveniently interpreted as statement of equilibrium. The governing equation for the 

water the transfer formulation, which is required for a coupled consolidation analysis, states that the 

total mass of a system is conserved and that the mass in a system can only change if mass crosses its 

boundaries.  

I.2 Domain Discretization 

The essence of the finite element method is embodied by discretization. Discretization is the process of 

subdividing a complex system into a number of finite elements. Figure 57 shows an 8-node quadrilateral 

and 6-node triangular element. Subdivision of the system into finite elements makes it possible to solve 

the governing equation by writing equations for each individual finite element. The term discretization 

implies approximation because the finite element method solves for the independent variable(s) at 

discrete points (the element nodes) within the domain. This produces a piece-wise approximation of a 

variable, which in reality is continuously distributed (e.g., x-displacement increment).  

 

Figure 57. Examples of finite elements. 

I.3  Primary Variable Approximation 

A primary variable is calculated only at the element nodes. Thus, a shape or interpolation function is 

required to generate a continuously distributed approximation of the primary variable across the 

element. The interpolation function describes the spatial variation of the primary variable within the 

element and is used to estimate its value between the known data points (i.e., the nodes). Interpolation 

of a primary variable is given by: 

𝑢 =  ∑ℎ𝑖𝑢𝑖

𝑞

𝑖=1

 

Equation 229 

where 𝑢 is the is the primary value anywhere within the element, 𝑢𝑖 is the value at nodal points, and ℎ𝑖 

is the interpolating function for that particular node. A function of this form is written for all primary 

variables, if there are more than 1 (e.g., displacement in the direction of the three primary coordinates). 
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The mathematical descriptions of the interpolating functions are irrelevant to this discussion. The key 

concept is that the primary variable anywhere within the element is described based on nodal values. 

I.4 Element Equations  

The solution of a partial differential equation by the finite element method ultimately produces an 

equation for each element. Bathe (2006) provides an insightful and generalized derivation of the finite 

element equation for a static stress-strain problem, which can be written using matrix notation as:  

𝑲(𝒎)𝑼(𝒎) = 𝑹(𝒎) Equation 230 

where 𝑲(𝒎) is the element characteristic (stiffness) matrix, 𝑼(𝒎) is the matrix of nodal unknowns, 𝑹(𝒎) 

is the nodal load vector for the element, which is sometimes called the forcing vector or the resultant 

vector. The matrix notation represents a set of simultaneous algebraic equations that can be solved 

using several techniques. The element characteristic matrix comprises several terms, including the 

constitutive matrix, 𝑫(𝒎), that is populated with the material properties. The finite element equation for 

a dynamic stress-strain problem takes the form:  

𝑴(𝒎)�̈�(𝒎) + 𝑪(𝒎)�̇�(𝒎) + 𝑲(𝒎)𝑼(𝒎) = 𝑹(𝒎) Equation 231 

The over dot indicates a time derivative of the primary variable (i.e. velocity), the double over dot 

indicates a second time derivative of the primary variable (i.e. acceleration), 𝑴(𝒎) is the element mass 

matrix, and 𝑪(𝒎) is the damping matrix. The mass matrix is calculated from the density of the material 

and the damping matrix can be calculated from the mass and stiffness matrix by means of Rayleigh 

damping assumptions. The first- and second-time derivative of the primary variable is related to the 

primary variable by means of direction integration methods (Bathe, 1996).  

Although not revealed by this basic discourse, and regardless of the complexity of the final form of the 

equation, the element equation is in fact a perfect reflection of the conservation statement on which it 

was derived. In other words, it is possible to inspect the mathematical operations and recover the 

conservation statement, which in the case of a stress-strain analysis is static equilibrium (even if at 

discrete time intervals and including the effects of inertia and damping forces). Desai (1979) provides a 

more elementary derivation that lends clarity to the idea that the element equation is a perfect 

reflection of the conservation statement.  

I.5 Global Equations 

One of the most elegant aspects of the finite element method lies in Step 5: assembly of the global finite 

element equation. The element equations (Equation 231) are generated recursively for every element in 

the domain and then added to the global finite element equation:  

𝑲𝑼 = 𝑹 Equation 232 



 

123 

where 𝑲 is the global characteristic matrix, 𝑼 is the global assemblage of nodal unknowns, and 𝑹 is the 

global load vector.  

The assembly process is based on the law of compatibility or continuity. The assembly process can also 

be considered the final step required to obey the governing partial differential equation, which applies 

to the entire domain (i.e., not just one element). The global finite element equation satisfies the 

governing partial differential equation because it is the result of assembling the individual equations for 

a single element that were formulated to satisfy the governing PDE. The assembly procedure is 

analogous to the method of sections used to analyze the static equilibrium of a truss. Equilibrium of the 

entire system is ensured by satisfying static equilibrium for each member of the structure.  

Assembly of the finite element equations requires material property and element geometry definitions. 

Conveniently, the discretization process produces a collection of elements and nodes with defined 

geometry, namely the Cartesian coordinates of all the nodes.  

It is important to note that the global finite element equation shown above is essentially a set of ‘n’ 

equations where n is the number of nodes multiplied by the degrees of freedom. The 𝑼 vector 

represents the ‘n’ primary variables and the 𝑹 vector represents the nodal load vector. Consequently, 

the only way a solution can be sought for this set of linear equations is to have no more than ‘n’ 

unknowns; consequently, a value of the primary variable or the nodal load must be known (specified) at 

every node. The final step of the finite element procedure (Step 6) is specification of the physical 

constraints to the solution at all nodes (i.e., boundary conditions) in order to solve the global equations 

to obtain a spatial description of the primary variable(s).  

Consider, for example, a simple domain in which the primary unknown is specified uniquely at two 

nodes on the left side and two nodes on the right side of the domain (Figure 58). Solution of Equation 

231 subject to these boundary conditions produces the primary variable at all nodes at which the 

primary variable is unknown. Since the left and right-side nodes had a specified value of the dependent 

variable, the forces at these nodes is unknown; while, in the interior nodes the value of the dependent 

variable is unknown; however, to satisfy the conservation of energy (i.e. static equilibrium), the net of 

the forces (in all coordinate directions) at these nodes is zero. Subsequent assembly of Equation 232 

produces the nodal forces at all nodes. The forces at the boundary nodes are non-zero because there is 

no adjacent element that apportions a forces with equal magnitude and opposite sign to cause 

cancellation.  

 

 

Figure 58. A simple finite element domain with boundary conditions on the left and right sides. 
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In summary, the finite element method is a procedure for solving a partial differential equation, which is 

a mathematical expression that governs the response of a physical system. Naturally, analysts seek to 

describe and analyze the behavior of these systems. The key aspects of the finite element method are: 

1. The partial differential equation describing the behavior of a physical system can be solved, 

using the finite element method, by discretizing the domain into finite elements. 

2. The process of discretization implies approximation; that is, the solution to the finite element 

equation provides the approximate spatial distribution of the primary variable at the nodes. 

3. The derivation of the finite element equations is based on a single element. The final equation 

embodies the material properties and element geometry. 

4. Using the principle of compatibility, these element equations are written recursively for every 

element in the domain and assembled into the global finite element equation. 

5. The global finite element equation is solved subject to boundary conditions.  

I.6 Constitutive Behaviour 

A constitutive model links a secondary quantity (e.g., stress) to the primary variable (e.g., displacement). 

More specifically, problems involving mechanical energy transfer (i.e. static equilibrium) require a 

constitutive law that links incremental stress changes to incremental strain quantities. The soil models 

presented in Section 5 and the structural constitutive models presented in Section 6 are examples of 

constitutive relationships that govern the link between stress and strain increments. The constitutive 

models often comprise material properties and/or functional relationships (e.g. failure law, yield 

function and plastic potential) that are a function of the ‘state’ (i.e. stress and strains) of the material, 

which are directly or indirectly functions of the primary variable (i.e. displacement increments). The 

mathematical descriptions embodied by the constitutive model lead to various types of stress-strain 

behaviours such as linear or non-linear elasticity, elastic-(perfect) plasticity, strain hardening and strain 

softening.  

I.6.1 Functional Relationships 

Many of the constitutive models in GeoStudio require a functional relationship between a material 

property and some other parameter. For example, water hydraulic conductivity can be defined as a 

function of matric suction and the effective elastic modulus can be made to vary with either minor 

effective stress or mean effective stress. Functional relationships are defined by a data set that relates 

the property to a parameter. The software then represents the data by a computed functional 

relationship, 𝑓(𝑥) (e.g., polynomial spline, linear interpolation, step function), which is used by the 

solver.  

The data points defining the functional relationship can be from a measured dataset or generated by 

published empirical or semi-empirical methods. In some cases, the software provides an estimation 

routine.  
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I.6.2 Add-ins 

User-defined functional relationships, such as those mentioned in Section I.6.1, can be generated by an 

Add-In. An Add-In is compiled computer code called by the solver. A material function add-in returns a 

specific property (e.g., thermal conductivity) at every Gauss point within every element to which the 

material model is assigned to the solver. The add-in can comprise a functional relationship that is multi-

variable, of any mathematical form, and dependent on another variable from the analysis being solved 

or from another analysis. 

SIGMA/W also has the capacity to accept a User Defined Constitutive Model (UDCM). A UDCM add-in 

essentially must return to the solver a constitutive matrix 𝑫(𝒎) for assembling the global stiffness matrix 

𝑲 and the accumulated stresses at the end of an iterative displacement (strain increment). The add-in 

Software Developer Kit (SDK) provides additional information regarding the development of a UDCM.  

I.7 Boundary Conditions 

GeoStudio can be used to analyze a variety of field problems in order to define the state variable 

spatially within the domain. The state variable may be a vector or scalar, where a vector has both 

magnitude and direction (e.g., forces/stresses in SIGMA/W), while a scalar has only magnitude (e.g., 

total head in SEEP/W). 

In the analysis of field problems, the values of the state variables are generally given on the boundaries. 

An example would be the total head along the ground surface of a reservoir impoundment or the 

vertical stress beneath a rigid foundation. Accordingly, these problems are called boundary value 

problems, where the solution within the domain depends on the conditions along the boundary of the 

domain (Bathe, 2006). A change in only one boundary value affects the entire solution. 

I.7.1 Types 

There are fundamentally three types of boundary conditions used in a finite element analysis: 

1. First-type or Dirichlet boundary condition; 

2. Second-type or Neumann boundary condition; and, 

3. Third-type or Robin boundary condition. 

Consider the global finite element equation (Equation 232) that comprises the global assemblage of 

nodal unknowns (𝑼) and the global load vector (𝑹). A first-type boundary condition specifies the primary 

unknown at a node and is used to populate the 𝑼 vector. A second-type boundary condition is the 

spatial derivative of the primary variable normal to the boundary. In the case of scalar problems, this 

would be equivalent to applying a flux. Second-type boundary conditions are applied over an area and 

apportioned to nodes via numerical integration. These boundary values are used to populate the 𝑹 

vector. Finally, a third-type boundary condition specifies a nodal value directly in the global load vector. 

Table 22 summarizes the fundamental boundary conditions in each GeoStudio product, while Section 7 

details boundary conditions unique SIGMA/W.  
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Table 22. Boundary condition types for each GeoStudio application. 

Application First-type Second-type Third-type 

SEEP/W Pore-water Total Head Water Flux Water Rate 

TEMP/W Temperature Heat Flux Heat Rate 

AIR/W Pore-air Total Head Air Flux Air Rate 

CTRAN/W Concentration Mass Flux Mass Rate 

SIGMA/W Displacement Stress Force 

QUAKE/W Displacement Stress Force 

 

Boundary values can be defined as constants or functions. A constant boundary condition implies that 

the state of the boundary remains the same throughout the analysis. Functions are generally used in 

transient analyses to define the boundary-type as a function of time, but functions also have an 

important role in a SIGMA/W Load-Deformation or coupled analysis. Finally, it should be noted that 

even the most involved boundary conditions, such as the surface energy balance boundary in TEMP/W 

or the unit gradient boundary in SEEP/W, ultimately reduces to one of the three fundamental types. The 

surface energy balance boundary condition, for example, is a heat flux (second-type) boundary.  

I.7.2 Add-ins 

User-defined boundary conditions can be generated by an Add-In. A boundary condition add-in returns 

a specific value to the solver for every node (First or Third Type) or Gauss point (Second Type) within 

every element to which the boundary condition is applied. The add-in can comprise a functional 

relationship that is multi-variable, of any mathematical form, and may be dependent on another 

variable from the analysis being solved or from a different analysis.  

I.8 Convergence 

The assemblage of finite element matrices includes a global stiffness matrix [𝐾] that comprises a 

constitutive law [𝐷] that could vary with stress and/or strain. A commonly used numerical procedure for 

coping with the non-linearity of the constitutive law involves repeatedly solving the finite element 

equations subject to a residual load vector:  

[𝐾]𝑖({∆𝑑}𝑖)
𝑗
= {𝜓}𝑗−1 

Equation 233 
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where the subscript 𝑗 is the iteration number, the subscript 𝑖 is the load step, {𝜓} is the vector of 

residual loads, and {𝜓}0 = {∆𝑅}. The residual load vector is calculated as a difference between the 

externally incremental boundary loads {∆𝑅} and the incremental nodal forces {∆𝐹} that are consistent 

with the incremental stresses {∆𝜎} calculated by the constitutive law. A difference arises because a 

constant constitutive stiffness matrix was assumed to assemble and solve the finite element equations, 

but in actuality the global stiffness matrix varies with stress and/or strain changes over the increment. 

Iteration continues until the maximum number of iterations is reached or the residual loads and 

iterative displacements are small. There are two techniques for settings the limits to the maximum 

allowable sizes of the residual loads and iterative displacements.  

I.8.1 Relative Displacements\Residual Loads 

A limit can be set on the relative displacements:  

‖({∆𝑑}𝑖)
𝑗
‖

‖{∆𝑑}𝑖‖
< 𝑇𝑂𝐿 

Equation 234 

 

and on the relative residual loads: 

‖{𝜓}𝑗‖

‖{𝜓}𝑗=1‖
< 𝑇𝑂𝐿 

Equation 235 

 

where ({∆𝑑}𝑖)
𝑗
 is the vector of displacement increments for the current iteration 𝑗, {∆𝑑}𝑖 the vector of 

displacement increments for the load step 𝑖, {𝜓}𝑗 the vector of residual loads for the current iteration 𝑗, 

and {𝜓}𝑗=1 the vector of residual loads from the first iteration. The tolerance (𝑇𝑂𝐿) defines the 

maximum allowable relative displacements or relative residual loads for a load step. The required 

tolerance can be dependent on various aspects of the simulation and the size of the domain. A tolerance 

𝑇𝑂𝐿 of 5.0E-06 to 5.0E-05 is generally required to obtain an accurate solution.  

I.8.2 Unbalanced Energy 

The maximum allowable sizes of the residual loads and iterative displacements can be embodied by a 

single relative quantity referred to as the relative unbalanced energy:  

|({𝜓}𝑗)
𝑇
({∆𝑑}𝑖)

𝑗
|

|({𝜓}𝑗=1)𝑇{∆𝑑}𝑖|
< 𝑇𝑂𝐿 

Equation 236 

 

where ({∆𝑑}𝑖)
𝑗
 is the vector of displacement increments for the current iteration 𝑗, {∆𝑑}𝑖 the vector of 

displacement increments for the load step 𝑖, {𝜓}𝑗 the vector of residual loads for the current iteration 𝑗, 

{𝜓}𝑗=1 the vector of residual loads from the first iteration. The tolerance (𝑇𝑂𝐿) defines the maximum 
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allowable relative unbalanced energy for a load step. The required tolerance can be dependent on 

various aspects of the simulation and the size of the domain. A tolerance 𝑇𝑂𝐿 of 1.0E-06 to 1.0E-05 is 

generally required to obtain an accurate solution. 

I.8.3 Stress Update Algorithm 

The residual load vector for each iteration {𝜓}𝑗 is calculated as the difference between the externally 

applied incremental boundary loads {∆𝑅}𝑖 and the incremental nodal forces {∆𝐹}𝑖 that are consistent 

with the incremental stresses {∆𝜎}𝑖 calculated by the constitutive law (refer to Section 3.4). Various 

strategies are employed to integrate the constitutive equations (Section 5) along an incremental strain 

path {∆𝜀𝑗}
𝑖
 produced by the iterative nodal displacements ({∆𝑑}𝑖)

𝑗
 (Potts and Zdravković, 1990). 

Regardless of the scheme that is employed, the integration is done numerically, resulting in successive 

estimates of the incremental stresses {∆𝜎} that must be equal within a tolerance. The local error {𝐸} in 

the successive estimates of the stress increments is calculated as (Potts and Zdravković, 1990):  

{𝐸} =
1

2
({∆𝜎2} − {∆𝜎1}) 

Equation 237 

 

where {∆𝜎2} and {∆𝜎1} are two successive estimates of the stress increments. The relative error is 

calculated as: 

𝑅 =
‖{𝐸}‖

‖{𝜎 + ∆𝜎}‖
≤ 𝑆𝑇𝑂𝐿 

Equation 238 

 

where 𝑆𝑇𝑂𝐿 is a user defined tolerance which is typically in the range of 1.0E-02 to 1.0E-05.  The 

denominator of Equation 238 comprises the accumulate stresses {𝜎 + ∆𝜎}, which are calculated from 

the average of two successive estimates of the stress increments {∆𝜎}:  

{∆𝜎} =
1

2
({∆𝜎2} + {∆𝜎1}) 

Equation 239 

 

The integration schemes adapts the differentials of the strain increment until 𝑅 ≤ 𝑆𝑇𝑂𝐿 or a minimum 

allowable differential is encountered. In the later case, 𝑅 > 𝑆𝑇𝑂𝐿 and the {∆𝜎}𝑖 could be inaccurate. 

Sensitivity studies can be used to determine if 𝑆𝑇𝑂𝐿 is significantly small enough to obtain an accurate 

solution without unnecessarily increasing computational time.   

I.8.4 Verifying Convergence 

The general techniques for verifying convergence include: 

1. Plotting graphs of the relative quantities calculated by Equation 236 or Equation 234 and 

Equation 235 versus the iteration count;  
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2. Plotting a graph of the number of iterations for each load. 

3. Identifying global rupture zones by means of perfectly plastic points and contours of deviatoric 

strain. 

Convergence settings for various types of analyses are illustrated in the example files provided in the 

Learning Resources.  
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Appendix II  Numerical Modelling Best Practice 
Burland (1987), in his seminal Nash Lecture, presented the idea that modelling is an integral part of 

geotechnical engineering practice (Figure 59). Geotechnical engineering involves defining the geological 

and hydrogeological system, understanding the constitutive behaviour of the material, and modelling. 

All three components are interlinked by experience. In the context of this discussion, the most 

prominent feature of this conceptualization is the fact that modelling is an integral part of the 

engineering process.  

 

Figure 59. Burland Triangle (Ground Engineering, 1996). 

Barbour and Krahn (2004) built upon the ideas of Burland (1996) and defined modelling as “the process 

by which we extract from a complex physical reality an appropriate mathematical reality on which we 

can base a design. The role of the numerical model is simply to assist us in developing the appropriate 

mathematical abstraction.” Stated another way, a mathematical model is a simplified representation of 

a complex reality based on our understanding of the physical system.  

This definition of modelling endorses the idea that modelling is about process, not prediction. The 

greatest strength of modelling is to develop the appropriate mathematical abstraction of a complex 

physical system. In turn, engineers are able to develop a sound understanding of the physical system 

and exercise better engineering judgment. The maximum benefit can only be achieved if modelling is 

incorporated into the entire problem solving process (Figure 59).  
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A finite element analysis is just one type of numerical model that is less restrictive and complimentary to 

other types of numerical models, such as analytical and graphical solutions. The primary reason for 

invoking a finite element analysis is to cope with various complexities, including: a) intricate geological 

and hydrogeological settings; b) nontrivial physical processes; c) multiple and competing design 

alternatives and economic implications; and, d) a decision making process that can be made difficult by 

the need to communicate ideas to regulators and the general public.  

Barbour and Krahn (2004) elaborate on some of the intricacies of each of these complexities. It is 

perhaps worth highlighting that engineering problems involving the earth are particularly complicated 

because natural systems exhibit extreme spatial variability, complex and sometimes unquantifiable 

material behavior, incongruent temporal and spatial scales, and in many cases, physical processes that 

are not fully understood. Barbour and Krahn (2004) illustrate this realization with a poignant case history 

involving a comparison of various numerical simulations to measured deflections of a structurally 

supported retaining wall for a deep excavation. None of the predictions of the lateral deflections were 

accurate, or true to the measurements.  

The reasons for the inaccuracies were related in part to the aforementioned complexities and 

conceptualization errors, and in part to numerical problems. One can conclude that, in general, 

predicting the exact response of a physical system is not feasible because it is impossible to reproduce 

all of the detail present in the physical problem in even the most refined mathematical model. 

Prediction should therefore not be the primary objective of numerical modelling. The encouraging 

aspect of the case history was that the overall patterns of the physical behaviour were adequately 

simulated. As such, the numerical solutions provided an appropriate basis for design. 

This short discourse brings us back to the key advantage of numerical modelling: the process of 

numerical modelling enhances engineering judgement and provides a basis for understanding 

complicated physical processes. The process of modelling is iterative and comprises at least four 

essential components:  

1. Define the modelling objective and develop a conceptual model of the problem; 

2. Determine the appropriate theoretical models (i.e., physics) that describe the key physical 

processes; 

3. Develop a mathematical description of these processes and verify that it provides an accurate 

solution; and, 

4. Interpret the results in relation to the observed physical reality. 

Defining the modelling objective and developing a conceptual model are the most important steps in 

the modelling process. Again, this is where numerical modelling can be exceptionally useful, as the 

process forces the analyst to incorporate information on site geology and hydrogeology, laboratory 

information, and any other pertinent information (e.g., construction sequencing) into a conceptual 

model of the problem. The conceptual model must also be linked with the objectives of the modelling 

exercise.  
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Determining the appropriate theoretical model involves gaining an understanding of the underlying 

physics and the constitutive behavior governing material behavior. From the analysts’ perspective, this is 

tantamount to ensuring that the formulation of the numerical model is representative of the physical 

process being explored. This understanding is manifest in a model’s development through the definition 

of the boundary conditions and material properties. These components often change as the analyst 

iterates through the modelling process; refining the model as the understanding of the physical system 

evolves and additional field and laboratory data becomes available.  

Eventually, the conceptual and theoretical models are committed to a mathematical solution. In a finite 

element analysis, the geometry of the problem domain is drawn, material properties are defined, and 

boundary conditions are applied to the domain. A verification of the solution is completed to ensure 

convergence, appropriate spatial and temporal discretization, and correct application of physics 

(perhaps via comparison with an analytical solution). A simple to complex mantra must be adopted, so 

that the analyst can be confident in the numerical solution.  

Finally, the results are interpreted within the context of the physical reality. The most fundamental 

question that should always be asked is: are the results reasonable? Stated another way, interpretation 

of the results should be done with a skeptical mind-set. The results of the finite element analysis could 

be compared with field monitoring data and should always be interpreted in light of the information 

used to develop the conceptual and theoretical models.  

A numerical model will likely evolve repeatedly over the course of the modelling process as the analyst 

is challenged by interpreting the results. Increasing complexity of the conceptual model may be 

required; however, speculating on high degrees of complexity in the absence of supporting observations 

is not just problematic, it makes the remaining parts of the process more difficult or impossible. The best 

numerical models include just enough complexity for the mathematical abstraction to reasonably 

approximate the physical reality.  
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Appendix III  SANICLAY Formulation 
The SANICLAY model (Dafalias el al. 2006) in general stress space is defined by the mean effective stress, 

𝑝′ (Equation 14) and the deviatoric part of the effective stress tensor, 𝒔, which is defined by: 

𝐬 = 𝛔′ − 𝑝′𝐈 Equation 240 

 

where 𝛔′ is the effective stress tensor and 𝐈 is the identity tensor.  

The model adopts a non associated flow rule, meaning that the yield function, 𝐹, and the plastic 

potential function, 𝑃, are different. The yield function can be written as:  

𝐹({𝜎′}, {𝑘}) =
3

2
(𝐬 − 𝑝′𝛃): (𝐬 − 𝑝′𝛃) − (𝑁2 −

3

2
𝛃: 𝛃) 𝑝′(𝑝′

0 − 𝑝′) Equation 241 

 

where 𝑝′
0 presents the isotropic hardening variable, that is the value of 𝑝′ at 𝐬 = 𝑝′𝛃. Here 𝛃 is a stress-

ratio-type tensor variable defining the rotation of the yield surface, and 𝑁 defines the shape of yield 

surface. The symbol : implies the trace of the product of two tensors. 

The plastic potential function is expressed by: 

𝑃({𝜎′}, {𝑚}) =
3

2
(𝐬 − 𝑝′𝛂): (𝐬 − 𝑝′𝛂) − (𝑀2 −

3

2
𝛂:𝛂)𝑝′(𝑝′

𝛼 − 𝑝′) Equation 242 

 

Similar with the yield function, 𝛂 is a stress-ratio-type tensor variable defining the rotation of the plastic 

potential surface with 𝑝′
𝛼 the value of 𝑝′ at 𝐬 = 𝑝′𝛂 .  

The critical stress-ratio 𝑀 in Equation 242 will be interpolated between its values 𝑀𝑐 and 𝑀𝑒 by means 

of the Lode angle 𝜃; according to:  

𝑀 = Θ(𝜃, 𝑐)𝑀𝑐;     Θ(𝜃, 𝑐) =
2𝑐

(1 + 𝑐) − (1 − 𝑐)𝑐𝑜𝑠(3𝜃)
;        𝑐 =

𝑀𝑒

𝑀𝑐
 Equation 243 

where 

𝑐𝑜𝑠(3𝜃) = √6 𝑡𝑟𝑎𝑐𝑒 𝐧3 Equation 244 

in which 𝐧 is the unit vector defined by the tensor (𝐫 − 𝛂) as:  

𝐧 =
𝐫 − 𝛂

‖𝐫 − 𝛂‖
=

𝐫 − 𝛂

√(𝐫 − 𝛂): (𝐫 − 𝛂)
 Equation 245 

where 𝐫 indicates the deviatoric stress- ratio tensor as: 
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𝐫 = 𝐬/𝑝′ Equation 246 

The basic components of the model proposed by Dafalias and Taiebat (2013) are similar to what was 

described above in terms of the yield and plastic potential functions, expect that the shape of the yield 

surface (i.e., 𝑁) is not constant in the new version of the model but depends on the direction of the 

loading through the value of the Lode angle (see Equation 243). In addition, according to Dafalias and 

Taiebat (2013), the orientation of both yield and plastic potential surfaces is assumed to be identical 

(i.e., 𝛂 = 𝛃). 

The hardening rule of the SANICLAY model involves the evolution of its state parameters (i.e., 𝑝′
0, 𝛂 and 

𝛃). As suggested by Dafalias el al. (2006) in a general stress space: 

�̇�′
0 = 〈𝐿〉�̅�′

0 = 〈𝐿〉 (
1 + 𝑒

𝜆 − 𝜅
)𝑝′

0 tr (
𝜕𝑔

𝜕𝛔
) Equation 247 

�̇� = 〈𝐿〉�̅� = 〈𝐿〉 (
1 + 𝑒

𝜆 − 𝜅
)𝐶 (

𝑝′

𝑝′
0

)

2

|tr (
𝜕𝑔

𝜕𝛔
)| [

3

2
(𝐫 − 𝑥𝛂): (𝐫 − 𝑥𝛂)]

1
2
(𝛂𝑏 − 𝛂) Equation 248 

�̇� = 〈𝐿〉�̅� = 〈𝐿〉 (
1 + 𝑒

𝜆 − 𝜅
)𝐶 (

𝑝′

𝑝′
0

)

2

|tr (
𝜕𝑔

𝜕𝛔
)| [

3

2
(𝐫 − 𝛃): (𝐫 − 𝛃)]

1
2
(𝛃𝑏 − 𝛃) Equation 249 

where the scalar multiplier is defined as: 

𝐿 =
3(𝐫 − 𝛃): �̇� + (𝑁2 −

3
2
𝐫: 𝐫) �̇�′

3(𝐬 − 𝑝0
′𝛃): �̅� + (𝑁2 −

3
2𝛃: 𝛃) �̅�′

0

 Equation 250 

and the bounding deviatoric tensors are: 

𝛂𝑏 = √2/3𝑀𝐧𝑥;        𝐧𝑥 =
𝐫/𝑥 − 𝛂

[(𝐫/𝑥 − 𝛂): (𝐫/𝑥 − 𝛂)]
1
2

 Equation 251 

𝛃𝑏 = √2/3𝑁𝐦;        𝐦 =
𝐫 − 𝛃

[(𝐫 − 𝛃): (𝐫 − 𝛃)]
1
2

 Equation 252 

In the new version of the SANICLAY model (Dafalias and Taiebat 2013), the evolution of the size of the 

yield surface (i.e., 𝑝′
0) is the same as Equation 247. The orientation of the yield and plastic potential 

surfaces, however, changes as follows: 

�̇� = 〈𝐿〉𝑐𝑝𝑎𝑡

𝑝′

𝑝′
0

(𝛂𝑏 − 𝛂) Equation 253 

where 
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𝛂𝑏 = √2/3
𝑀

𝑧
{1 − exp [−𝑠

|𝜂|

𝑀
]}𝐧𝑟;        𝐧𝑟 =

𝐫

[𝐫: 𝐫]
1
2

;       |𝜂| = [
3

2
𝐫: 𝐫]

1
2

 Equation 254 

To prevent the excessive rotation of the yield and plastic potential surfaces, Dafalias and Taiebat (2013) 

propose a remedy on Equation 254 that involves the substitution of |𝜂| with |𝜂| − 〈|𝜂| − 𝜉𝑀〉. In this 

correction procedure, 𝜉 is a model parameter and have a maximum allowable value as follows: 

𝜉 ≤ −
1

𝑠
ln [1 − 𝑧

min(𝑀𝑒 , 𝑁𝑒)

𝑀𝑐
] Equation 255 

 


