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Symbols 
𝛼 Albedo  
𝛼 Dispersivity of soil/medium, m 

  in longitudinal direction, 𝛼𝐿 
   in air phase, 𝛼𝐿𝑎 
   in water phase, 𝛼𝐿𝑤 
  in transverse direction, 𝛼𝑇 
   in air phase, 𝛼𝑇𝑎 
   in water phase, 𝛼𝑇𝑤 

𝛼 Rotation angle of x-y plane, degrees 
𝛼 Slope angle for surface mass balance 

𝛼𝑟𝑤 Root water extraction reduction factor 
𝛼𝑤 Volumetric coefficient of thermal 

expansion at constant pressure, /K 
𝛽 Soil structure compressibility, /kPa 

𝛽𝑤 Isothermal compressibility of water, 
4.8x10-10 /kPa at 10 ⁰C 

𝛾 Psychrometric constant, 0.0665 kPa/C  
Γ Slope of the saturation vapor pressure 

vs. temperature curve, kPa/C 
𝛿 Solar declination, radians 
Δ𝑡 Time increment 
Δ𝑥 Nodal spacing 
𝜀 

 
Emissivity 
  air emissivity, 𝜀𝑎 

𝜂 Dynamic viscosity, kg/s/m 
𝜃 Normalized time for sinusoidal radiation 

distribution, radians 
𝜃 Volumetric content, m3/m3 

  water content, 𝜃𝑤 
  unfrozen water content, 𝜃𝑢𝑤𝑐   
   at a given temperature, 𝜃𝑢𝑤𝑐

′  
  saturated water content, 𝜃𝑠𝑎𝑡 
  residual water content, 𝜃𝑟𝑒𝑠 
  lower limit of the volumetric water  
   content function, 𝜃𝐿 
  air content, 𝜃𝑎 
  ice content, 𝜃𝑖𝑐𝑒  

𝜃𝑒𝑞  Equivalent diffusion porosity, m3/m3 

𝜆 Decay constant, /s 
𝜈 Poisson’s ratio 
𝜌 Mass density, g/ m3 

  soil dry bulk density, 𝜌𝑑  
  of air, 𝜌𝑎 
  of water, 𝜌𝑤 
  of solids particles, 𝜌𝑠 
  of snow, 𝜌𝑠𝑛𝑜𝑤  
  of ice, 𝜌𝑖𝑐𝑒 

𝜎 Stefan-Boltzmann constant, 5.67×10-8  
W/m2/K4 

𝜏 Tortuosity factor 
Ψ Atmospheric stability correction factor  

  for heat flux,Ψℎ  

  for momentum flux, Ψ𝑚  

𝜑 Latitude, radians 

𝜑 Matric suction, kPa 

𝜔𝑠 Sunset hour angle, radians 

𝜋𝑟𝑜𝑜𝑡 Root length density, m/m3 

𝜋𝑟𝑜𝑜𝑡
′  Normalized water uptake distribution, /L 
𝐴 Area, m2  
𝐴 Normalized amplitude for sinusoidal 

radiation distribution, MJ/hr/m2  
𝐴𝐸 Actual evapotranspiration, m3/s/m2 

𝐴, 𝐵, 𝑛 Empirical relationship constants for 
thermosyphon heat transfer 
conductance 

𝑎𝑠, 𝑏𝑠 Angstrom formula regression constants 
𝑎, 𝑎′, 𝑛, 𝑚 
 
 

 

Curve fitting parameters for van 
Genuchten (1980), Fredlund and Xing 
(1994) volumetric water content 
functions 

C Courant dimensionless number 
𝐶 Mass concentration, kg/m3 

  in the gas phase, 𝐶𝑔𝑝 

  of gas in the dissolved phase, 𝐶𝑎𝑝 

𝐶(𝜑) Correlation function for Fredlund-Xing 
(1994) volumetric water content function 

𝐶(𝑚) FEM constitutive matrix 
𝐶𝑝 Volumetric heat capacity, J/m3/K 

  of liquid water, 𝐶𝑤 
  of vapor, 𝐶𝑣 
  of air, 𝐶𝑎 
  of solids, 𝐶𝑠 
  of ice, 𝐶𝑖𝑐𝑒  
  of soil at a given water content, 𝐶𝑝

′  

  of a partially frozen soil, 𝐶𝑝𝑓 

  apparent volumetric heat capacity, 𝐶𝑎𝑝 

𝑐𝑝 Specific heat capacity, J/kg/K 
  of liquid water, 𝑐𝑤 
  of vapor, 𝑐𝑣 
  of air, 𝑐𝑎  
  of solids, 𝑐𝑠 
  of moist air, 𝑐𝑠𝑎  

𝐷 Coefficient of diffusion or dispersion, 
m2/s 
  diffusion of water vapor in soil, 𝐷𝑣  
  bulk mass diffusion coefficient, 𝐷𝑑

∗  
  bulk diffusion coefficient for gas  
   phase, 𝐷𝑑𝑎

∗  
  bulk diffusion coefficient for gas  
   in dissolved phase, 𝐷𝑑𝑤

∗  
  mechanical dispersion, 𝐷′ 
  hydrodynamic dispersion, 𝐷 
  hydrodynamic dispersion of gas in     
   gas phase, 𝐷𝑎  
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  hydrodynamic dispersion of gas in  
   dissolved phase, 𝐷𝑤 

𝐷 Diameter, m 
  10% passing on grain size curve, 𝐷10 
  60% passing on grain size curve, 𝐷60 

𝐷𝑣𝑎𝑝 Diffusivity of water vapor in air at given 
temperature, m2/s 

𝑑 Zero-displacement height of wind 
profiles, m 

𝑑𝑟 Inverse relative distance from Earth to 
Sun, m 

𝐸 Modulus of elasticity 
𝐸 Long-wave radiation, MJ/m2/day 
𝐸𝑎  Aridity 
𝐸𝑏  Maximum emissive power of an ideal 

radiator 

𝐸̇ Rate of energy change, W 

  transfer into control volume, 𝐸̇𝑖𝑛 

  transfer out of control volume, 𝐸̇𝑜𝑢𝑡 

  generated in control volume, 𝐸̇𝑔  

  stored in a control volume, 𝐸̇𝑠𝑡  

𝑓(𝑢) Latent heat transfer coefficient as a 
function of wind speed, MJ/m2/kPa/day 

𝐺𝑆𝐶  Solar constant, 118 MJ/m2/day 
𝑔 Gravitational constant, m/s2 
𝐻 Dimensionless Henry’s equilibrium 

constant 
ℎ Convection heat transfer coefficient, 

W/m2/K 
ℎ Relative humidity 

  of the soil, ℎ𝑠 
  of the air, ℎ𝑎  
  daily maximum (air), ℎ𝑚𝑎𝑥  
  daily minimum (air), ℎ𝑚𝑖𝑛  

ℎ Depth / height, m 
  of a crop, ℎ𝑐  
  of precipitation, ℎ𝑃 
  of snow, ℎ𝑠𝑛𝑜𝑤  
  incremental snow accumulation, 
∆ℎ𝑠𝑛𝑜𝑤 
  incremental snowmelt depth, ∆ℎ𝑚𝑒𝑙𝑡 
  incremental snow-water equivalent  
   accumulation, ∆ℎ𝑠𝑤𝑒  

ℎ𝑖 Finite element interpolating function for 
the primary variable 

ℎ𝑓𝑔 Latent heat of fusion, J/kg 

ℎ𝑠𝑓 Latent heat of vaporization, J/kg 

𝐼 Freeze/thaw index, K-days 
  of the air, 𝐼𝑎  
  of the ground surface, 𝐼𝑔 

𝐽 Mass flux, kg/s/m2 

  associated with dispersion, 𝐽𝐷 
  associated with advection, 𝐽𝐴 
  total surface mass flux at free exit  
   boundary, 𝐽𝑠 

𝐽 Day of the year 
𝐾 Bulk modulus, N/m2 

 
𝐾 Hydraulic conductivity, m/s  

  of isothermal liquid water, 𝐾𝑤 
  of a fluid, 𝐾𝑓  

  of dry air, 𝐾𝑎  
  of an unfrozen soil, 𝐾𝑢 
  of a frozen soil, 𝐾𝑓  

  of a partially frozen soil, 𝐾𝑝𝑓 

  of a saturated soil, 𝐾𝑠𝑎𝑡  
  of a dry soil, 𝐾𝑑𝑟𝑦 

  of soil at a given water content, 𝐾′ 
  in the x direction, 𝐾𝑥  
  in the y direction, 𝐾𝑦 

𝐾𝑦
′ 𝐾𝑥

′⁄  Hydraulic conductivity anisotropy ratio 

𝐾𝑑  Adsorption coefficient 
𝐾𝑟

∗ Bulk reaction rate coefficient for 
irreversible first order reactions, 1/s 

𝐾(𝑚) Element characteristic matrix for FEM 
𝑘 Canopy radiation extinction constant 
𝑘 Von Karman’s constant, 0.41 
𝑘 Thermal conductivity, W/m/K  

  of soil solids, 𝑘𝑠 
  of liquid water, 𝑘𝑤 
  of a fluid, 𝑘𝑓 

  of snow, 𝑘𝑠𝑛𝑜𝑤 
  of an unfrozen soil, 𝑘𝑢 
  of a frozen soil, 𝑘𝑓 

  of a saturated soil, 𝑘𝑠𝑎𝑡 
  of a dry soil, 𝑘𝑑𝑟𝑦 

𝐿 Characteristic length, m 
𝐿𝐴𝐼 Leaf area index 
𝑀 Molar mass, kg/mol 
𝑀 Mass, kg 

  of water vapor, 𝑀𝑣 
  of liquid water, 𝑀𝑤 
  of solids, 𝑀𝑠 

𝑀𝐹 Thermal conductivity modifier factor  
𝑀𝐹 Snow depth multiplier factor  

𝑀(𝑚) FEM element mass matrix 

𝑀̇ Stored mass rate of change, kg/s 

  of all water stored in REV, 𝑀̇𝑠𝑡 

  of liquid water stored in REV, 𝑀̇𝑤 

  of all air stored in an REV, 𝑀̇𝑔 

  of water vapor stored in REV, 𝑀̇𝑣 

  of dry air stored in REV, 𝑀̇𝑎 

  of dissolved dry air stored in REV, 𝑀̇𝑑  
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  of adsorbed mass phase in REV, 𝑀̇𝑎𝑝 

  of dissolved mass phase in REV, 𝑀̇𝑑𝑝 

  of mass added to REV, 𝑀̇𝑆 

  due to decay reactions, 𝑀̇𝜆 
𝑚̇ Mass rate of change due to flow, kg/s 

  flow into a control volume, 𝑚̇𝑖𝑛 
  flow out of a control volume, 𝑚̇𝑜𝑢𝑡 
  flow of liquid water, 𝑚̇𝑤 
  flow of water vapor, 𝑚̇𝑣 
  flow of air, 𝑚̇𝑎 
  due to diffusion, 𝑚̇𝐷  
  due to advection, 𝑚̇𝐴 
  perpendicular to control surfaces of  
   x, y and z coordinates, 𝑚̇𝑥, 𝑚̇𝑦, 𝑚̇𝑧 

𝑚𝑤 Slope of the volumetric water content 
function, m2/N 

𝑚𝑣 Coefficient of volume change, /kPa 
𝑁 Maximum possible duration of sunshine 

or daylight, hours 
Nu Nusselt dimensionless number 
𝑛 Porosity 
𝑛 Actual duration of sunlight, hours 
𝑛 n-Factor 

Pe Péclet dimensionless number 
𝑝𝑣 Vapor pressure, kPa 

of air above the soil, 𝑝𝑣
𝑎  

of saturated air, 𝑝𝑣0
𝑎  

at the soil surface, 𝑝𝑣
𝑠 

at the surface of a saturated soil, 𝑝𝑣0
𝑠  

𝑄̇ Heat transfer rate due to conduction, J/s 
  perpendicular to control surfaces of  

   x, y and z coordinates, 𝑄̇𝑥, 𝑄̇𝑦 , 𝑄̇𝑧 

𝑞 Curve fitting parameter for air 
conductivity function, 2.9 

𝑞 Volumetric flux, m3/s/m2 
  of air, 𝑞𝑎  
  of liquid water, 𝑞𝑤 
  of fluid normal to free  
     surface, 𝑞𝑛 
  associated with rainfall, 𝑞𝑃  
  associated with snow melt, 𝑞𝑀 
  associated with infiltration, 𝑞𝐼 
  associated with runoff, 𝑞𝑅  
  through plant roots, 𝑞𝑟𝑜𝑜𝑡  
  associated with evaporation, 𝑞𝐸  
  of potential evaporation, 𝑞𝑃𝐸  
  of actual evaporation, 𝑞𝐴𝐸  
  of potential transpiration, 𝑞𝑃𝑇  
  of actual transpiration, 𝑞𝑃𝑇  
  of potential evapotranspiration due 
     to radiation or aerodynamics, 𝑞𝑃𝐸𝑇  
  of user-defined daily potential   

     evapotranspiration, 𝑞𝑃𝐸𝑇 

𝑞 Heat flux, MJ/m2/day 
  ground heat flux, 𝑞𝑔 

  heat flux through snow, 𝑞𝑠𝑛𝑜𝑤 
  latent heat flux, 𝑞𝑙𝑎𝑡  
  sensible heat flux, 𝑞𝑠𝑒𝑛𝑠 
  surface convective heat flux, 𝑞𝑠𝑢𝑟  
  extraterrestrial radiation, 𝑞𝑒𝑥𝑡  
  shortwave radiation, 𝑞𝑠 
  net radiation, 𝑞𝑛 
  net longwave radiation, 𝑞𝑛𝑙 
  net shortwave, 𝑞𝑛𝑠 

𝑞𝑛
∗  Net radiation in terms of water flux, 

mm/day 
𝑞𝑟𝑜𝑜𝑡

𝑚𝑎𝑥  Maximum potential root water 
extraction rate per soil volume, m3/s/m3 

𝑅 Gas constant, 8.314472 J/K/mol 
Re Reynolds dimensionless number 
𝑅𝑖 Richardson number 

𝑅(𝑚) FEM nodal load vector or forcing vector 
𝑟 Resistance, s/m 

  aerodynamic resistance to heat flow  
   from soil surface to atmosphere, 𝑟𝑎  
  neutral aerodynamic resistance, 𝑟𝑎𝑎   
  bulk surface resistance, 𝑟𝑐  
  bulk stomatal resistance of well- 
   illuminated leaf, 𝑟𝑙 

𝑟𝑚𝑎𝑥 Total root length, m 
𝑆 Degree of saturation 
𝑆 Solubility coefficient 
𝑆∗ Mass sorbed per mass of solids 
Sc Schmidt dimensionless number 

𝑆𝐶𝐹 Soil cover fraction 
𝑇 Temperature, K 

  of air, 𝑇𝑎  
  daily maximum (air), 𝑇𝑚𝑎𝑥  
  daily minimum (air), 𝑇𝑚𝑖𝑛  
  of the ground surface, 𝑇𝑔 

  at the snow surface, 𝑇𝑠𝑛𝑜𝑤 
  of fluid at the bounding surface,  𝑇𝑠𝑢𝑟  
  of fluid outside the thermal boundary  
  layer surface, 𝑇∞ 
  normal freezing point of water at  
  atmospheric pressure, 𝑇0 

𝑡 Time, s 
  of sunrise, 𝑡𝑠𝑢𝑛𝑟𝑖𝑠𝑒  

𝑡 Duration, days 
  of the air freeze/thaw season, 𝑡𝑎  
  of the ground surface freeze/thaw    
  season, 𝑡𝑔 

𝑡1/2 Decay half-life, s 



 

ix 
 

𝑈̇ Rate of latent or sensible energy change, 
J/s 

  of latent energy, 𝑈̇𝑙𝑎𝑡 

  of latent energy from fusion, 𝑈̇𝑠𝑓  

  latent energy from vaporization, 𝑈̇𝑠𝑓  

  of sensible thermal energy, 𝑈̇𝑠𝑒𝑛𝑠  

𝑈(𝑚) FEM matrix of nodal unknowns 
𝑢 Primary variable anywhere within a finite 

element 
  at nodal points, 𝑢𝑖  

𝑢 Wind speed, m/s 
𝑢 Pressure, kPa 

  of pore water, 𝑢𝑤 
  of pore air, 𝑢𝑎 
  gauge air pressure at given elevation,   
   𝑢𝑎𝑦

  

  absolute air pressure, 𝑢𝑎 
  reference absolute air pressure, 𝑢𝑎0

 

𝑢𝑡 Sensible thermal energy per unit mass, 
J/kg 

𝑉 Volume, m3 

   of air, 𝑉𝑎  
  total volume, 𝑉𝑡 

𝑉𝐹 View factor accounting for angle of 
incidence and shadowing 

𝑣 Velocity, m/s  
  of water, 𝑣𝑤 
  of air, 𝑣𝑎  

𝑣𝑤 Specific volume of water, m3/kg  
𝑦𝑟𝑒𝑓  Reference elevation, m  

𝑧 Surface roughness height, m 
  for heat flux, 𝑧ℎ 
  for momentum flux, 𝑧𝑚 

𝑧𝑟𝑒𝑓  Reference measurement height, 1.5 m  
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Preface 
GeoStudio is an integrated, multi-physics, multi-dimensional, platform of numerical analysis tools 

developed by GEOSLOPE International Ltd. for geo-engineers and earth scientists. The multi-disciplinary 

nature of GeoStudio is reflected in its range of products: four finite element flow products (heat and 

mass transfer); two finite element stress-strain products; and a slope stability product that employs limit 

equilibrium and stress based strategies for calculating margins of safety. The focus of this book is on the 

heat and mass transfer products.  

Countless textbooks provide a thorough treatment of the finite element method and its 

implementation, both in a general and subject-specific manner. Similarly, there are numerous 

comprehensive presentations of the physics associated with heat and mass transfer in multiple 

disciplines, such as soil physics, hydrogeology, and geo-environmental engineering. Journal articles and 

conference papers abound on specific aspects of a physical processes, characterization of constitutive 

behaviours, and numerical strategies for coping with material non-linearity.  

It follows, then, that the idea of writing a book on heat and mass transfer finite element modelling with 

GeoStudio is not only daunting, but also a bit presumptuous, given the breadth of material already 

available to the reader. Nonetheless, we feel that a review of the foundational principles associated with 

both the physics and the numerical approaches used by GeoStudio will have value to the reader and will 

assist in the effective use of the models.  

It is important to note that the purpose of this ‘book’ is not to provide detailed instructions for 

operating the software. The primary vehicle for that information is the support section of the GEOSLOPE 

website (www.geoslope.com), where the user can access tutorial movies, example files, and the 

GeoStudio knowledge base. In addition, help topics are available during operation of the software in the 

Help menu (accessed by pressing F1). These resources provide valuable information for those learning 

how to use GeoStudio.  

The first two sections of this book include a general overview of GeoStudio and the finite element 

method as applied to field problems. Sections 3 through 6 summarize the theoretical formulations of 

each flow product and provide information on the product-specific material models and boundary 

conditions. The ultimate objective of these sections is to help the reader understand the fundamental 

components of each product. Readers can gain a deeper understanding of particular topic areas by 

exploring the wealth of resources available in the public domain, which are referenced throughout. 

Appendix I  includes a detailed description of the FEM solution used in GeoStudio and Appendix II 

provides a general discourse on the best practice for numerical modelling. 

http://www.geoslope.com/
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1 GeoStudio Overview 
GeoStudio comprises several products (Table 1). The first four products listed in Table 1 simulate the 

flow of energy or mass while the following three products are used to simulate a wide range of soil 

mechanical behavior. BUILD3D is a feature-based model construction, visualization tool. Integration of 

many of the products within GeoStudio provides a single platform for analyzing a wide range of 

geotechnical and geoscience problems. 

Table 1. Summary of GeoStudio applications. 

Product Simulation Objective 

TEMP/W & TEMP3D Heat (thermal energy) transfer through porous media  

SEEP/W & SEEP3D Water (Liquid water and vapor) transfer through saturated and unsaturated 
porous media 

CTRAN/W & CTRAN3D Solute or gas transfer by advection and diffusion 

AIR/W & AIR3D Air transfer in response to pressure gradients 

SIGMA/W Static stress-strain response and stability of geotechnical structures 

QUAKE/W Dynamic stress-strain response of geotechnical structures  

SLOPE/W Static or pseudo-dynamic slope stability using limit equilibrium or stress-based 
methods 

BUILD3D 3D model construction and visualization. 2D sections can be created for any of 
the 2D solvers above. 

 

Many physical processes are coupled; that is, a change in the state variable governing one process alters 

the state variable governing another. For example, time-dependent deformation of a soil in response to 

an applied load represents a two-way, coupled process. During consolidation, the rate of water flow 

controls the dissipation of excess pore-water pressures and causes deformation, while the generation of 

excess pore-water pressures is linked to the resistance of the soil skeleton to deformation. Thus, the 

water transfer and equilibrium equations must be solved in a coupled manner using the SIGMA/W 

coupled consolidation formulation.  

Water and air flow through porous media provides another example of a coupled process. The flow of 

water and air flow depend on their respective fluid pressures while the storage of water and air depend 

on the differential pressure between these two phases. A similar coupling occurs during the simulation 

of density dependent water flow. The simulation of heat (TEMP/W) or mass transport (CTRAN/W) can 

utilize water flows generated in a seepage analysis (SEEP/W); however, the water flow, in turn, can be 

affected by variations in water density created by the distribution of heat or mass within the domain. 

The same type of coupling also occurs in a density-dependent air flow analysis (i.e., AIR/W and 

TEMP/W). Table 2 summarizes some of the processes that can be coupled in GeoStudio. Additional 

coupling can also be simulated using the Add-in functionality within GeoStudio. One example of this 

includes the use of oxygen transport and consumption within a waste rock dump (CTRAN/W) to create 

heating (TEMP/W), which then results in air flow (AIR/W) that drives oxygen transport (CTRAN/W).  
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A single GeoStudio Project file (*.GSZ) can contain multiple geometries and multiple analyses. Each 

analysis may contain a single set of physics (i.e., one product) or may integrate more than one set of 

physics (i.e., multiple products) with various levels of dependency (i.e., coupled or uncoupled analyses). 

For certain scenarios involving one-way coupling, it is often convenient to simulate the independent 

process in a separate analysis and direct the subsequent dependent analysis to the results from the 

independent analysis. For example, a CTRAN/W analysis could refer to water contents and water flow 

rates from an independent SEEP/W analysis. This simple method of product integration is the same 

functionality that allows a SLOPE/W or SIGMA/W analysis, for example, to obtain pore-water pressure 

information from a SEEP/W analysis. However, for two-way coupling, the coupled sets of physics must 

be contained within a single analysis. 

Table 2. Summary of the coupled heat and mass transfer formulations.  

Product Coupled Processes 

SEEP/W 
AIR/W 

Coupled water and air transfer for modelling the effect of air pressure changes on 
water transfer and vice versa 

SEEP/W 
TEMP/W 

Forced convection of heat with water and/or vapor transfer, free convection of liquid 
water caused by thermally-induced density variations, and thermally-driven vapor 
transfer  

AIR/W 
TEMP/W 

Forced convection of heat with air transfer and free convection of air caused by 
thermally-induced density variations 

CTRAN/W 
SEEP/W 

Advection of dissolved solutes with water transfer and free convection of liquid water 
caused by density variations due to dissolved solutes    

CTRAN/W 
AIR/W 

Advection of gaseous solutes with air transfer and free convection of air caused by 
density variations due to differential gas pressures    

SIGMA/W Coupled water transfer and stress-strain behavior to simulate the transient pore-water 
pressure and deformation response (i.e. consolidation) due to loading and/or unloading 
and/or changes in hydraulic conditions. 

 

The various analyses within a project file are organized in an Analysis Tree, as illustrated in many of the 

example files. The Analysis Tree provides a visual structure of the analyses and identifies the ‘Parent-

Child’ relationships. For example, a CTRAN/W analysis might be the child of a SEEP/W analysis and, 

consequently, the integration and dependency relationships are visible in the parent-child Analysis Tree 

structure. The Analysis Tree also encourages the user to adopt a workflow pattern that is consistent with 

the modelling methodology advocated by GEOSLOPE International Ltd. (Appendix II ).  

The heat and mass transfer products support one-dimensional, two-dimensional, three-dimensional 

(SEEP3D), plan view, and axisymmetric analysis. The formulation and finite element procedures are the 

same regardless of dimensionality. The selected dimensionality is incorporated during assembly of the 

element characteristic matrices and mass matrices (Section I.4). Assembly of these matrices involves 

numerical integration over the volume of the element, which requires the area and out-of-plane 

thickness for elements that are not three-dimensional. For a conventional two-dimensional analysis, the 

element thickness defaults to a unit length (1.0). The element thickness and width for a one-dimensional 
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analysis are implicitly one unit length. A cylindrical coordinate system is adopted for axisymmetric 

analyses, with the conventional 𝑥 axis representing a radial dimension, 𝑟. The thickness of the domain at 

any point in space is the arc length, which is calculated from the specified central angle and radius 𝑟. The 

element thickness for a plan view analysis is the vertical distance between the upper and lower surfaces.  
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2 Finite Element Approach for Field Problems 
The finite element method (FEM) is a numerical approach to solving boundary value problems, or field 

problems, in which the field variables are dependent variables associated with the governing partial 

differential equation (PDE). The PDE provides a mathematical description of the physical process and is 

generally derived by applying a statement of conservation (i.e., of mass or energy) to a representative 

elementary volume (REV). The REV is a control volume of finite dimensions (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) representing the 

smallest volume of the domain for which characteristic material properties can be defined. The 

conservation statement relates a mathematical description of the change in ‘storage’ (of heat or mass) 

within the REV, to a mathematical description of the ‘flow’ processes (heat or mass transport) into or 

out of the REV.  

These problems are considered ‘field’ problems because the solution is the distribution of the energy 

‘field’ controlling flow throughout the domain of interest. In geotechnical or earth sciences, the domain 

is some specified volume of geologic material with known properties. The final solution is the value of 

the dependent variable as a function of space (and time in the case of a transient problem). The solution 

is constrained by boundary conditions specified over the domain boundaries. These boundary conditions 

follow three general forms: (1) a specified value of the dependent variable (i.e., a 1st type boundary 

condition); (2) the spatial derivative of the dependent variable (i.e., a 2nd type boundary condition); or 

(3) a secondary variable which is a function of the dependent variable (e.g., a mass or energy flux).  

The numerical solution is based on the principle of discretization, in which the domain is represented by 

a series of ‘finite elements’. Shape functions specify the distribution of the dependent variable across 

each of these elements. Consequently, the value of the dependent variable anywhere within the 

element is a function of the dependent variable at the element nodes. This discretization enables the 

representation of the PDE in a semi-continuous way across the entire domain, and results in a series of 

simultaneous equations, solved using linear algebra. 

The key components of the FEM are:   

1. Discretization of the domain into finite elements; 

2. Selection of a function to describe how the primary variable varies within an element; 

3. Definition of the governing partial differential equation (PDE); 

4. Derivation of linear equations that satisfy the PDE within each element (element equations); 

5. Assembly of the element equations into a global set of equations, modified for boundary 

conditions; and, 

6. Solution of the global equations. 

Appendix I provides a detailed description of the FEM. The following sections highlight three key FEM 

components for each product type: (1) development of the PDE describing the relevant physics; (2) the 

material models used to describe material behavior; and (3) the boundary conditions used to constrain 

the FEM solution. 
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3 Water Transfer 
SEEP/W (or SEEP3D) simulates the movement of liquid water or water vapor through saturated and 

unsaturated porous media. This might include simulations of steady or transient groundwater flow 

within natural flow systems subject to climatic boundary conditions, pore pressures around engineered 

earth structures during dewatering, or the impact of flooding on the time-dependent pore pressures 

within a flood control dyke. In some cases, it is important to simulate both liquid and vapor water 

movement. An important example in this regard is the simulation of soil-vegetation-atmosphere-

transfers, such as evaporation, transpiration, and infiltration in the design of reclamation soil covers for 

mine waste or landfills. The following sections summarize the governing physics, material properties, 

and boundary conditions that are foundational to a seepage analysis: Section 3.1 summarizes the water 

transfer and storage processes included in the formulation; Section 3.2 describes the constitutive 

models used to characterize water transfer and storage; and Section 3.3 describes the boundary 

conditions unique to this product. One final section provides additional information on dealing with 

material non-linearity and the associated challenges faced by the convergence schemes required to 

solve these types of problems. The symbols section at the beginning of this document has a full listing of 

the parameter definitions used in the following sections.  

3.1 Theory 
Domenico and Schwartz (1998) provide a comprehensive theoretical review of groundwater flow 

through porous media. The conservation of mass statement requires that the difference in the rate of 

mass flow into and out of the REV must be equal to the rate of change in mass within the REV, as 

follows: 

𝑀̇𝑠𝑡 ≡
𝑑𝑀𝑠𝑡

𝑑𝑡
= 𝑚̇𝑖𝑛 − 𝑚̇𝑜𝑢𝑡 + 𝑀̇𝑆 

Equation 1 

where 𝑀𝑠𝑡 is the stored mass, the inflow and outflow terms, 𝑚𝑖𝑛 and 𝑚𝑜𝑢𝑡, represent the mass 

transported across the REV surface, and 𝑀𝑆 represents a mass source or sink within the REV. The over-

dot indicates a time-derivative (rate) of these quantities. 

The rate of change in the mass of water stored within the REV is: 

𝑀̇𝑠𝑡 = 𝑀̇𝑤 + 𝑀̇𝑣 Equation 2 

where 𝑀̇𝑤 and 𝑀̇𝑣 represent the rate of change of liquid water and water vapor, respectively. The liquid 

water may contain dissolved solids and therefore have a density that is different from that of 

freshwater. The rate of change in the stored liquid water is given by: 

𝑀̇𝑤 =
𝜕(𝜌𝑤𝜃𝑤)

𝜕𝑡
𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 3 

which can be expanded to: 
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𝑀̇𝑤 = 𝜌𝑤 (𝜃𝑤𝛽𝑤

𝜕𝑢𝑤

𝜕𝑡
+ 𝛽

𝜕𝑢𝑤

𝜕𝑡
+ 𝑚𝑤

𝜕𝜑

𝜕𝑡
) + 𝜃𝑤𝜌𝑤𝛼𝑤

𝜕𝑇

𝜕𝑡
 

Equation 4 

where 𝜌𝑤 is the density of water, 𝜃𝑤 is the volumetric water content, 𝛽𝑤 is the isothermal 

compressibility of water (~4.8E-10 m2/N at 10 ⁰C), 𝑢𝑤 is the pore-water pressure, 𝛽 is the soil structure 

compressibility, 𝑚𝑤 is the slope of the volumetric water content function, and 𝛼𝑤 is the volumetric 

coefficient of thermal expansion at constant pressure. The matric suction, 𝜑, is the difference between 

pore-air pressure and pore-water pressure (𝜑 = 𝑢𝑎 − 𝑢𝑤).  

The soil structure compressibility is equivalent to the inverse of the bulk modulus (1 𝐾⁄ ) and links 

volumetric straining of the soil structure to changes in pore-water pressure. The specified soil 

compressibility must embody the loading conditions. For example, under three-dimensional loading 

conditions, the bulk modulus is related to the modulus of elasticity, 𝐸, and Poisson’s ratio, 𝜈, by the 

expression: 𝐾 = 𝐸 [3(1 − 2𝜈)]⁄ . Under two-dimensional plane strain loading conditions, the bulk 

modulus is expressed as 𝐾 = 𝐸 [(1 + 𝜈)(1 − 2𝜈)]⁄ . Under one-dimensional loading conditions, the 

compressibility is equivalent to the coefficient of volume change, 𝑚𝑣 , and the bulk modulus, which is 

often referred to as the constrained modulus for this loading condition, is related to the modulus of 

elasticity and Poisson’s ratio by the expression: 𝐾 = 𝐸(1 − 𝜈) [(1 + 𝜈)(1 − 2𝜈)]⁄ . Typical values of the 

elastic properties (𝐸 and 𝜈) can be found in a number of textbooks on soil mechanics (e.g., Kézdi, 1974; 

Bowles, 1996). 

The rate of change in the water vapor stored in the REV is calculated with the ideal gas law: 

𝑀̇𝑣 =
𝜕𝑀𝑣

𝜕𝑡
=

𝑀

𝑅

𝜕

𝜕𝑡
(

𝑝𝑣𝑉𝑎

𝑇
) =

𝑀

𝑅

𝜕

𝜕𝑡
(

𝑝𝑣𝜃𝑎

𝑇
) 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 5 

where 𝑀 is the molar mass, 𝑅 is the gas constant (8.314472 J·K−1·mol−1), and 𝑝𝑣 is the vapor pressure. 

The volume of air, 𝑉𝑎, is calculated using the volumetric air content (𝜃𝑎 = 𝑛 − 𝜃𝑤 − 𝜃𝑖𝑐𝑒) multiplied by 

the volume of the REV (𝑑𝑥 𝑑𝑦 𝑑𝑧).  

The total rate of change in the mass of water stored within the REV must be equal to the difference 

between the rate of mass inflow (𝑚̇𝑖𝑛) and the rate of mass outflow (𝑚̇𝑜𝑢𝑡). These rates of mass flow 

describe processes of water (liquid or vapor) transport across the REV control surfaces. All flows occur in 

response to energy gradients. In the case of liquid water, flow can occur due to mechanical (elastic 

potential, gravitational potential, kinetic), electrical, thermal, or chemical energy gradients; however, 

only mechanical energy gradients are considered by SEEP/W. Vapor flow can occur by diffusive transport 

due to partial vapor pressure gradients, or by advective transport with flowing air driven by gradients in 

total pressure and density in the bulk air phase (i.e., integrated with AIR/W).  

The mass flow rate of liquid water in response to mechanical energy gradients can be described using 

Darcy’s Law for a variable density fluid (e.g., Bear, 1979; Bear, 1988): 

𝑚̇𝑤 = 𝜌𝑤𝑞𝑤𝑑𝑥𝑑𝑧 =
−𝐾𝑤

𝑔
(

𝜕𝑢𝑤

𝜕𝑦
+ 𝜌𝑤𝑔

𝜕𝑦

𝜕𝑦
) 𝑑𝑥𝑑𝑧 

Equation 6 
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where 𝑞𝑤 is the water flux, 𝐾𝑤 is the isothermal liquid water hydraulic conductivity, and 𝑔 is the 

acceleration due to gravity.  

The mass flow rate of water vapor can be described using Fick’s Law (e.g., Joshi et al., 1993; Nassar et 

al., 1989; Nassar et al., 1992; Saito et al., 2006): 

𝑚̇𝑣 = −𝐷𝑣

𝑀

𝑅

𝜕

𝜕𝑡
(

𝑝𝑣

𝑇
) 𝑑𝑥𝑑𝑧 

Equation 7 

The coefficient of diffusion for water vapor in soil, 𝐷𝑣, is given by (Saito et al., 2006):   

𝐷𝑣 = 𝜏𝜃𝑎𝐷𝑣𝑎𝑝 Equation 8 

where 𝜏 is a tortuosity factor (e.g., Lai et al., 1976) and 𝐷𝑣𝑎𝑝 is the diffusivity of water vapor in air at a 

temperature specified in Kelvin (e.g., Kimball, 1976). Separation of the mass flow rate of water vapor 

into isothermal and thermal components yields (Philip and de Vries, 1957): 

𝑚̇𝑣 = − (
𝐾𝑣𝑈

𝑔

𝜕𝑢𝑤

𝜕𝑡
+ 𝜌𝑤𝐾𝑣𝑇

𝜕𝑇

𝜕𝑡
) 𝑑𝑥𝑑𝑧 

Equation 9 

 in which 

𝐾𝑣𝑈 =
𝐷𝑣

𝜌𝑤

𝑝𝑣𝑜
𝑠 𝑀

𝑅𝑇

𝑀𝑔

𝑅𝑇
ℎ𝑠 

Equation 10 

𝐾𝑣𝑇 =
𝐷𝑣

𝜌𝑤

𝑀

𝑅𝑇
ℎ𝑠 (

𝜕𝑝𝑣𝑜
𝑠

𝜕𝑇
−

𝑝𝑣𝑜
𝑠 𝑢𝑤𝑀

𝜌𝑤𝑅𝑇2
−

𝑝𝑣𝑜
𝑠

𝑇
) 

Equation 11 

where 𝐾𝑣𝑈 is the isothermal vapor conductivity, 𝐾𝑣𝑇 is the thermal vapor conductivity, and 𝑝𝑣𝑜
𝑠  is the 

saturation vapor pressure. Substitution and expansion of the rate equations into the conservation 

statement and division by the dimensions of the control volume gives:  

𝜌𝑤 (𝜃𝑤𝛽𝑤

𝜕𝑢𝑤

𝜕𝑡
+ 𝛽

𝜕𝑢𝑤

𝜕𝑡
+ 𝑚𝑤

𝜕

𝜕𝑡
(𝑢𝑎 − 𝑢𝑤)) + 𝜃𝑤𝜌𝑤𝛼𝑤

𝜕𝑇

𝜕𝑡
+

𝜕𝑀𝑣

𝜕𝑡

=
𝜕

𝜕𝑦
[(

𝐾𝑤

𝑔
+

𝐾𝑣𝑈

𝑔
)

𝜕𝑢𝑤

𝜕𝑡
+ 𝜌𝑤𝐾𝑤

𝜕𝑦

𝜕𝑦
+ 𝜌𝑤𝐾𝑣𝑇

𝜕𝑇

𝜕𝑡
] 

Equation 12 

 

Equation 12 can be simplified to the more conventional groundwater flow equation by ignoring vapor 

transfer and thermal expansion, and dividing by water density, which is assumed to be spatially and 

temporally constant: 

(𝜃𝑤𝛽𝑤 + 𝛽)
𝜕𝑢𝑤

𝜕𝑡
+ 𝑚𝑤

𝜕(𝑢𝑎 − 𝑢𝑤)

𝜕𝑡
=

𝜕

𝜕𝑦
[(

𝐾𝑤

𝜌𝑤𝑔
)

𝜕𝑢𝑤

𝜕𝑦
+ 𝐾𝑤

𝜕𝑦

𝜕𝑦
] 

Equation 13 
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Equation 13 is further simplified for a saturated porous media by neglecting the second term (for 

changing saturation):   

(𝜃𝑤𝛽𝑤 + 𝛽)
𝜕𝑢𝑤

𝜕𝑡
=

𝜕

𝜕𝑦
[(

𝐾𝑤

𝜌𝑤𝑔
)

𝜕𝑢𝑤

𝜕𝑦
+ 𝐾𝑤

𝜕𝑦

𝜕𝑦
] 

Equation 14 

 

Table 3 provides a complete list of the physical processes included in the partial differential equation 

solved by SEEP/W. 

Table 3. Summary of the physical processes included in the SEEP/W formulation.  

Physical Process GeoStudio Products 

Storage: water compressibility SEEP/W 

Storage: soil structure compressibility SEEP/W 

Storage: change in saturation due to changes in matric suction arising 
from variation in pore-water pressure 

SEEP/W 

Storage: change in saturation due to changes in matric suction arising 
from variation in pore-air pressure 

SEEP/W + AIR/W 

Storage: thermal expansion/contraction SEEP/W + TEMP/W 

Storage: phase change by vaporization SEEP/W  

Flow: pressure-driven (isothermal) SEEP/W 

Flow: gravity-driven  SEEP/W 

Flow: pressure-driven vapor flow (isothermal) SEEP/W 

Flow: thermally-driven vapor flow SEEP/W + TEMP/W 

Flow: density variations due to temperature distributions  SEEP/W + TEMP/W  

Flow: density variations due to concentration distributions SEEP/W + CTRAN/W 

 

The key elements of the SEEP/W formulation are as follows: 

• The default physical processes are pressure and gravity-driven flow, and storage changes due to 

water compressibility, soil structure compressibility, and changes in matric suction (i.e., 

drainage). 

• Isothermal vapor transfer (vapor transfer in response to partial pressure gradients caused by 

spatial variations in pore-water pressure) is an optional physical process that does not require 

coupling with another GeoStudio product. 

• Thermally-driven vapor transfer (vapor transfer in response to partial pressure gradients caused 

by spatial variations in temperature) requires integration with TEMP/W. 

• The vapor diffusion coefficient can represent either isothermal or non-isothermal conditions and 

is a derived material property calculated by the software (e.g., Saito et al. 2006).  

• SEEP/W can be coupled with AIR/W to simultaneously model air transfer and its effect on water 

transfer and storage.  
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• In the absence of an air flow analysis, the pore-air pressure within an unsaturated soil is 

assumed to be at zero gauge pressure. In this case, the matric suction is equal to the negative 

water pressure.  

• Water flow in response to density gradients can be simulated by coupling SEEP/W with either 

TEMP/W (density changes in response to temperature) or CTRAN/W (density changes in 

response to concentration).  

• The isothermal compressibility of water (𝛽𝑤) is a property of the analysis, not a material model 

input.  

• The volumetric coefficient of thermal expansion at constant pressure (𝛼𝑤) is a property of the 

analysis, not a material model input. The coefficient is calculated by the software from a 

functional relationship between water density and temperature developed by the International 

Committee for Weights and Measures.  

• The soil structure compressibility (𝛽) is a material model input. 

• Changes in storage due to soil structure compressibility are due solely to pore-water pressure 

changes; therefore, the total stresses within the domain are assumed constant.  

3.2  Material Models 
The material models in SEEP/W characterize the ability of a porous medium to store and transmit water. 

The transmission and storage properties for vapor are calculated automatically by the software, while 

the properties for liquid water are user inputs. The liquid water storage property defines the change in 

the stored mass of liquid water in response to pore-water pressure variation (Equation 4). The hydraulic 

conductivity function describes the ability of a soil to transmit water in response to the energy gradients 

(Equation 6).  

3.2.1 Saturated-Only 

Table 4 summarizes the inputs required by the saturated-only material model. Water storage changes 

are characterized by specifying the soil structure compressibility, which links volumetric straining of the 

soil structure to pore-water pressure variation (Equation 14). Under saturated conditions, the 

volumetric water content is equivalent to porosity. 

Table 4. Parameters for the saturated-only material model. 

Parameter Symbol Unit 

Hydraulic Conductivity  𝐾𝑠𝑎𝑡  m/s 

Soil Structure Compressibility 𝛽 m2/kN 

Saturated Volumetric Water Content 𝜃𝑤  

Anisotropy Ratio 𝐾𝑦
′ 𝐾𝑥

′⁄   

Rotation Angle 𝛼 Degrees 

 

The saturated hydraulic conductivity is assumed to be constant for each defined material type. The user-

entered value represents the conductivity along an x’-axis rotated at some angle (𝛼), counter-clockwise 
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from the horizontal plane. The rotation angle is automatically set to 0. The hydraulic conductivity in the 

y’-axis is computed from the anisotropy ratio and the hydraulic conductivity in the x’-axis direction.  

3.2.2 Saturated-Unsaturated  

Table 5 summarizes the inputs for the saturated-unsaturated material model. The volumetric water 

content function characterizes the stored water volumes as a function of matric suction (𝜑), which, if air 

pressure is assumed to be zero, is equivalent to negative pore-water pressure. Hydraulic conductivity is 

a function of the volumetric water content, and therefore indirectly a function of pore-water pressure. 

Figure 1 presents an example of both functions.  

Table 5. Parameters for the saturated-unsaturated material model. 

Parameter Symbol Unit 

Hydraulic Conductivity Function 𝐾(𝑢𝑤) m/s 

Soil Structure Compressibility 𝛽 m2/kN  (1/kPa) 

Volumetric Water Content Function 𝜃𝑤(𝑢𝑤)  

Anisotropy Ratio 𝐾𝑦
′ 𝐾𝑥

′⁄   

Rotation Angle 𝛼 Degrees 

 

  

Figure 1. Examples of (a) volumetric water content and (b) hydraulic conductivity functions. 

 

3.2.2.1 Hydraulic Conductivity of Frozen Ground 

If SEEP/W is coupled to the thermal analyses product (TEMP/W), there is an option to reduce the 

hydraulic conductivity of the saturated-unsaturated material model when the soil freezes. The change in 

water pressure within the liquid water of a partially frozen soil can be determined from the Clapeyron 

thermodynamic equilibrium equation (Schofield, 1935; Williams and Smith, 1989): 
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𝜕𝑢𝑤

𝜕𝑇
=

ℎ𝑠𝑓

𝑣𝑤𝑇0
 

Equation 15 

 

where 𝜕𝑇 is the change in temperature below the phase change temperature, ℎ𝑠𝑓 is the latent heat of 

vaporization, 𝑣𝑤 is the specific volume of water, and 𝑇0 is the normal freezing point of water at 

atmospheric pressure. Equation 15 is used to calculate the reduction in pore-water pressure of the 

unfrozen liquid water, which is then used to determine the conductivity directly from the hydraulic 

conductivity function.  

3.2.3  Estimation Techniques 

3.2.3.1 Volumetric Water Content Function 

GeoStudio provides a number of methods for estimating the volumetric water content function. Closed 

form equations requiring curve fit parameters can be used to generate the volumetric water content 

function according to techniques developed by Fredlund and Xing (1994):  

𝜃𝑤 = 𝐶(𝜑)
𝜃𝑠𝑎𝑡

𝑙𝑛 [𝑒 + (
𝜑
𝑎

)
𝑛

]
𝑚 

Equation 16 

or van Genuchten (1980): 

𝜃𝑤 = 𝜃𝑟𝑒𝑠 +
𝜃𝑠𝑎𝑡 − 𝜃𝑟𝑒𝑠

[1 + (𝑎′𝜑)𝑛]𝑚
 

Equation 17 

where 𝑎, 𝑎′, 𝑛, and 𝑚 are curve fitting parameters that control the shape of the volumetric water 

content function, 𝐶(𝜑) is a correlation function, 𝜃𝑠𝑎𝑡 is the saturated volumetric water content, and 𝜃𝑟𝑒𝑠 

is the residual volumetric water content. Note that the parameter 𝑎 in Equation 16 has units of pressure 

and is related to the parameter 𝑎′ (𝑎′ = 1/𝑎), used by van Genuchten (1980) in Equation 17.  

Sample volumetric water content functions are available for a variety of soil particle size distributions, 

ranging from clay to gravel. These sample functions are generated by using characteristic curve fit 

parameters in Equation 17. The volumetric water content function can also be estimated using the 

modified Kovacs model developed by Aubertin et al. (2003). The model requires grain size data including 

the diameter corresponding to 10% and 60% passing on the grain size curve (i.e., D10 and D60), and the 

liquid limit. Finally, tabular data for volumetric water content and suction, obtained from the literature, 

estimated from other pedotransfer functions or from the results of laboratory testing, can be entered 

directly into the model.  

3.2.3.2 Hydraulic Conductivity Function 

GeoStudio provides two routines to estimate the hydraulic conductivity function from the saturated 

hydraulic conductivity and the volumetric water content function. The first is the Fredlund et al. (1994) 

equation:  
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𝐾𝑤(𝜃𝑤) = 𝐾𝑠𝑎𝑡 ∫
𝜃𝑤 − 𝑥

𝜑2(𝑥)
𝑑𝑥

𝜃𝑤

𝜃𝑟𝑒𝑠

∫
𝜃𝑠𝑎𝑡 − 𝑥

𝜑2(𝑥)
𝑑𝑥

𝜃𝑠𝑎𝑡

𝜃𝑟𝑒𝑠

⁄  
Equation 18 

where 𝐾𝑠𝑎𝑡 is the saturated hydraulic conductivity, 𝑥 is a dummy variable of integration representing the 

water content, and the remainder of the symbols are defined in Section 3.2.3.1.  

The second estimation method is the equation proposed by van Genuchten (1980). The parameters in 

the equation are generated using the curve fitting parameters from the volumetric water content 

function and an input value for saturated hydraulic conductivity. The closed-form equation for hydraulic 

conductivity is as follows: 

𝐾𝑤(𝜑) = 𝐾𝑠𝑎𝑡

{1 − (𝑎′𝜑)𝑛−1[1 + (𝑎′𝜑)𝑛]−𝑚}2

[1 + (𝑎′𝜑)𝑛]
𝑚
2

 
Equation 19 

3.3 Boundary Conditions 
The solution of the FEM equations is constrained by boundary conditions specified across the domain. 

These boundary conditions generally take the form of the dependent variables (1st type boundary 

condition) or the gradient of the dependent variable (2nd type boundary condition) normal to the 

boundary. The 2nd type boundary condition is generally expressed in terms of the water flow rate across 

the boundary. The case of a ‘zero flow’ boundary is a special case in which the gradient of the 

dependent variable normal to the boundary is set to zero. The zero flow boundary is the default 

boundary condition, since all nodes have zero net flow in the absence of a source or sink, according to 

the conservation of mass statement. Thus, the zero flow boundary condition is assumed when there is 

no boundary condition specified at an exterior node. 

The basic 1st and 2nd type boundary conditions are generally self explanatory and the means of defining 

them are described in the example files and tutorials. However, the more complex boundary conditions 

merit further discussion and are described in the following sections.   

3.3.1 Potential Seepage Face Review 

The potential seepage face review boundary should be used if a free surface (i.e., pressure equal to 

zero) may develop along the boundary. For example, this condition can be used to simulate water 

discharging along a portion of the downstream side of an earth structure or flow into an unpressurized 

drain. A seepage face review is also required if the applied water flux boundary condition is in excess of 

the infiltration capacity of the soil. The review process ensures that the maximum pore-water pressure 

along the discharge surface or on the infiltration boundary is zero. A potential seepage face review can 

be completed when using the following boundary conditions: total head, water flux, water rate, and 

total head versus volume.  

3.3.2 Total Head versus Volume 

The water level within a topographic low or basin can vary over time as water flow across the ground 

surface causes the height of ponded water to change. The water level in a pond or lake, for example, 
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might increase if there is groundwater discharge (Figure 2). A similar situation develops during a falling 

head test within a standpipe well. The rate at which the water level in the well drops depends on the 

rate of flow across the screen. These types of scenarios can be modelled using a total head versus 

cumulative volume boundary condition. When this boundary condition is applied, SEEP/W will 

automatically adjust the total head within an irregularly shaped depression as water flows into or out of 

the domain, based on the cumulative volume of flow across the boundary and the geometry of the 

topographic surface. Alternatively, the relationship between total head and cumulative flow volumes 

(into or out of the domain) can be defined a priori for well-defined geometries (e.g., a constructed pond 

or the riser pipe of a well).  

    

Figure 2. Example of the Total Head versus Volume boundary condition applied to the inside of an excavation.  

 

3.3.3 Unit Gradient 

Water that enters the ground surface and passes beyond an upper active zone to enter the deeper 

groundwater system is considered recharge or deep/net percolation. In uniform, deep, unsaturated 

zones, the gravity gradient becomes the dominant gradient responsible for net percolation. In this 

situation, the hydraulic gradient is equal to the elevation gradient (𝑑𝑦/𝑑𝑦), which is always 1.0. Since 

the vertical hydraulic gradient produced by gravity is unity, the rate of net percolation and the hydraulic 

conductivity become numerically equal and the pore-water pressures remain relatively constant with 

depth. Under these conditions, Darcy’s Law can be written as follows (after Equation 6): 

𝑞𝑤 = −𝐾𝑤 (
𝜕𝑢𝑤

𝜕𝑦
+

𝜕𝑦

𝜕𝑦
) = −𝐾𝑤(0.0 + 1.0) = −𝐾𝑤 

Equation 20 

The unit gradient boundary condition can be applied to the lower boundary of a domain when the 

negative pore-water pressure (suction) is assumed to be constant with depth. However, this assumption 

does not require that suction is constant with time because a change in the flux associated with net 

percolation will affect suction even under the unit gradient conditions.  
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3.3.4 Land-Climate Interaction 

SEEP/W can simulate Soil-Vegetation-Atmosphere-Transfers across the ground surface using the land-

climate interaction (LCI) boundary condition. The LCI boundary condition can reflect various ground 

surface conditions including bare, snow-covered, or vegetated ground. A boundary condition of this type 

can be used to compute the water balance and net percolation through an engineered cover system or 

evaluate the ability of a cover system to provide sufficient water for long-term plant growth.  

3.3.4.1 Surface Mass Balance Equation 

The water flux at the ground surface can be calculated with a mass balance equation:  

(𝑞𝑃 + 𝑞𝑀)𝑐𝑜𝑠𝛼 + 𝑞𝐸 + 𝑞𝑅 = 𝑞𝐼 Equation 21 

where superscripts on the water fluxes (𝑞) indicate rainfall (𝑃), snow melt (𝑀), infiltration (𝐼), 

evaporation (𝐸) and runoff (𝑅), and 𝛼 is the slope angle. Rainfall is only considering during solve-time if 

the air temperature is above freezing. The slope angle is used to convert a vertical flux (i.e., P and M) to 

a flux normal to the boundary. The evaporation and runoff fluxes are negative; that is, out of the 

domain. Infiltration is the residual of the mass balance equation and forms the boundary condition of 

the water transfer equation. Transpiration does not appear in Equation 18 because root water uptake 

occurs below the ground surface.  

If the applied infiltration flux results in ponding, the pore-water pressure is set to zero and the time step 

is resolved. Runoff is then calculated at the end of the time step as: 

𝑞𝑅 = 𝑞𝐼
𝑠𝑖𝑚 − (𝑞𝑃 + 𝑞𝑀)𝑐𝑜𝑠𝛼 − 𝑞𝐸 Equation 22 

where 𝑞𝐼
𝑠𝑖𝑚 is the simulated infiltration flux.  

The maximum amount of evapotranspiration at a site is defined by the potential evapotranspiration 

(PET). This potential rate of water transfer is partitioned into potential evaporation (PE) and potential 

transpiration (PT) based on the soil cover fraction (SCF). SCF varies from 0.0 for bare ground to 1.0 for a 

heavily vegetated surface. The proportion of PET attributed to potential surface evaporation is: 

𝑞𝑃𝐸 = 𝑞𝑃𝐸𝑇(1 − 𝑆𝐶𝐹) Equation 23 

while the portion that is potential transpiration flux is: 

𝑞𝑃𝑇 = 𝑞𝑃𝐸𝑇(𝑆𝐶𝐹) Equation 24 

Equation 24 is used to calculate root water uptake. The evaporation flux at the ground surface rarely 

equals the potential evaporation due to limited water availability. The evaporation flux in Equation 21 is 

calculated by recasting Equation 23 as: 

𝑞𝐸 = 𝑞𝐴𝐸(1 − 𝑆𝐶𝐹) Equation 25 



 

15 
 

where 𝑞𝐴𝐸 is the actual evaporation. The user has the option to allow evaporation to occur during 

rainfall events.  

Ritchie (1972) proposed the following equation, based on the interception of solar radiation by the 

vegetation canopy, to apportion PET into PE and PT:  

𝑆𝐶𝐹 = 1 − 𝑒−𝑘(𝐿𝐴𝐼) Equation 26 

where 𝐿𝐴𝐼 is the leaf area index and 𝑘 is a constant governing the radiation extinction by the canopy as 

a function of the sun angle, distribution of plants, and arrangement of leaves. The value of 𝑘 is generally 

between 0.5 and 0.75. Various expressions exist for estimating 𝐿𝐴𝐼 from crop height.  

3.3.4.1.1 Calculation of Evapotranspiration 

Modelling evaporative flux at the ground surface (Equation 22 and Equation 25) requires knowledge of 

the actual evaporation, while modelling root water uptake via Equation 24 requires the potential 

evapotranspiration. There are three ‘Evapotranspiration’ methods available in SEEP/W: 1) user-defined; 

2) Penman-Wilson; and, 3) Penman-Monteith.  

The potential evapotranspiration is specified as a function of time for method 1. The actual evaporation 

is calculated using the relationship proposed by Wilson et al. (1997): 

𝑞𝐴𝐸 = 𝑞𝑃𝐸𝑇 [
𝑝𝑣

𝑠 − 𝑝𝑣
𝑎

𝑝𝑣0
𝑠 − 𝑝𝑣

𝑎] 
Equation 27 

where 𝑝𝑣
𝑠 and 𝑝𝑣

𝑎 are the vapor pressures at the surface of the soil and the air above the soil, 

respectively, and 𝑝𝑣0
𝑠  is the vapor pressure at the surface of the soil for the saturated condition (kPa). 

The term in brackets, which is referred to as the limiting function (𝐿𝐹), is a ratio of the actual vapor 

pressure deficit to the potential vapor pressure deficit for a fully saturated soil. The user input, 𝑞𝑃𝐸𝑇, can 

be determined from measured data or empirical and semi-empirical methods such as Thornthwaite 

(1948) and Penman (1948).  

The second method, the Penman-Wilson method, is based on the modification of the well-known 

Penman (1948) equation used to calculate potential evaporation. The Penman-Wilson method 

calculates the actual evaporation from the bare ground surface as (Wilson et al., 1997): 

𝑞𝐴𝐸 =
Γ𝑞𝑛

∗ + 𝛾𝐸𝑎

Γ + 𝛾/ℎ𝑠
 

Equation 28 

where the aridity, 𝐸𝑎, is given as: 

𝐸𝑎 = [2.625(1 + 0.146𝑢)]𝑝𝑣
𝑎 (1

ℎ𝑎
⁄ − 1

ℎ𝑠
⁄ ) Equation 29 

and 
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ℎ𝑎 Relative humidity of the air 
ℎ𝑠 Relative humidity of the soil 
Γ Slope of the saturation vapor pressure verses temperature curve 

𝑞𝑛
∗  Net radiation in terms of water flux 

𝛾 Psychrometric constant = 0.0665 kPa/C 
𝑢  Wind speed 

 

The Penman-Wilson equation calculates potential evapotranspiration by substituting a relative humidity 

of 1.0 into Equation 28, which causes the equation to revert to the original Penman equation (Penman, 

1948). Calculation of the relative humidity at the ground surface (ℎ𝑠) requires temperature and matric 

suction. A heat transfer analysis (TEMP/W) can be used to compute the temperature at the ground 

surface; otherwise, the ground temperature is assumed to be equal to the air temperature.  

Monteith extended the original work of Penman to crop surfaces by introducing resistance factors. The 

Penman-Monteith equation (method 3) for calculating potential evapotranspiration, 𝑞𝑃𝐸𝑇, is well 

accepted in the soil science and agronomy fields and is the recommended procedure of the Food and 

Agriculture Organization of the United Nations (Allen et al., 1998). This method is generally best for 

vegetated systems where transpiration dominates over evaporation. The Penman-Monteith equation 

separates potential evapotranspiration into radiation and aerodynamic terms, and is considered a 

combined model (energy balance and aerodynamic method):   

𝑞𝑃𝐸𝑇 = 𝑞𝑃𝐸𝑇
𝑟𝑎𝑑 + 𝑞𝑃𝐸𝑇

𝑎𝑒𝑟𝑜 =
1

ℎ𝑓𝑔
[

Γ(𝑞𝑛 − 𝑞𝑔)

Γ + 𝛾 (1 +
𝑟𝑐
𝑟𝑎

)
+

𝜌𝑎𝑐𝑠𝑎
(𝑝𝑣0

𝑎 − 𝑝𝑣
𝑎)

𝑟𝑎
⁄

Γ + 𝛾 (1 +
𝑟𝑐
𝑟𝑎

)
] 

Equation 30 

where  

𝑞𝑃𝐸𝑇 Potential evaporation flux 
ℎ𝑓𝑔 Latent heat of vaporization 

𝑞𝑛 Net radiation 
𝑞𝑔 Ground heat flux 

𝜌𝑎 Mean air (atmospheric) density 
𝑐𝑠𝑎 Specific heat of moist air 

(𝑝𝑣0
𝑎 − 𝑝𝑣

𝑎) Vapor pressure deficit 
𝑝𝑣0

𝑎  Saturated vapor pressure at the mean air temperature 

𝑝𝑣
𝑎 Actual vapor pressure of the air at a reference height 

𝑟𝑐 Bulk surface (crop canopy) resistance 
𝑟𝑎 Aerodynamic resistance 

 

The radiation term considers the difference between the net radiation flux and the ground heat flux, 

while the aerodynamic term considers the vapor pressure deficit. The aerodynamic resistance controls 

the transfer of water vapor from the evaporating surface into the air above the canopy and is given by 

(Allen et al., 1998):  



 

17 
 

𝑟𝑎 =
1

𝑢𝑘2
[𝑙𝑛 (

𝑧𝑟𝑒𝑓 − 𝑑

𝑧𝑜𝑚
)] [𝑙𝑛 (

𝑧𝑟𝑒𝑓 − 𝑑

𝑧𝑜ℎ
)] 

Equation 31 

where 

𝑢 Wind speed 
𝑘 von Karman’s constant = 0.41 

𝑧𝑟𝑒𝑓 height of wind, humidity, temperature measurements (generally at 1.5 m) 

𝑑 = (2 3⁄ )𝑧𝑐 Zero-plane displacement height of the wind profile 
𝑧𝑚 = (0.123)𝑧𝑐 Surface roughness height for momentum flux 

𝑧ℎ = 0.1𝑧𝑚 Surface roughness height for heat and vapor flux 
𝑧𝑐 Crop height 

 

The zero-plane displacement height and surface roughness parameter for momentum are generally 

assumed to be some fraction of the vegetation height. The roughness parameter for heat and water 

vapor is assumed to be a fraction of the roughness parameter for momentum (Allen et al., 1998; 

Dingman, 2008; Saito and Simunek, 2009).  

The crop canopy resistance controls water vapor transfer through the transpiring crop and can be 

estimated by (Allen et al., 1998):  

𝑟𝑐 =
𝑟𝑙

0.5𝐿𝐴𝐼
=

100

0.5𝐿𝐴𝐼
=

200

𝐿𝐴𝐼
 

Equation 32 

where 𝑟𝑙 is bulk stomatal resistance of the well-illuminated leaf. The 𝐿𝐴𝐼 cannot be zero (bare ground) in 

Equation 32, so a minimum of 0.1 is imposed in SEEP/W.  

Potential evapotranspiration is calculated for a vegetated surface of any height. The potential 

evapotranspiration value is then apportioned into evaporative and transpiration fluxes, using Equation 

23 and Equation 24. As such, method 3 does not reduce PE to AE based on water availability. It is worth 

noting that the crop canopy resistance approaches infinity as the 𝐿𝐴𝐼 approaches zero. Thus, the 

Penman-Monteith equation does not adequately represent evaporation-dominant systems. 

3.3.4.1.2 Root Water Uptake 

SEEP/W determines the root water uptake as part of the LCI boundary condition if vegetation 

characteristics have been defined. A general equation for the maximum possible root water extraction 

rate per volume of soil, 𝑞𝑟𝑜𝑜𝑡
𝑚𝑎𝑥, over a root zone of arbitrary shape is given by (Feddes et al., 2001): 

𝑞𝑟𝑜𝑜𝑡 = 𝜋𝑟𝑜𝑜𝑡
′ 𝛼𝑟𝑤𝑞𝑃𝑇 Equation 33 

where 𝛼𝑟𝑤 is a reduction factor due to water stress, 𝑞𝑃𝑇 is equal to the potential transpiration flux, and 

𝜋𝑟𝑜𝑜𝑡
′  is the normalized water uptake distribution. The potential transpiration flux is computed using 

Equation 24. The reduction factor is defined by a plant limiting function, which is a functional 

relationship between the reduction factor and matric suction. Equation 33 is uniquely calculated at each 

gauss point within the root zone.  

The normalized water uptake distribution is: 
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𝜋𝑟𝑜𝑜𝑡
′ =

𝜋𝑟𝑜𝑜𝑡

∫ 𝜋𝑟𝑜𝑜𝑡
𝑟𝑚𝑎𝑥

0
𝑑𝑟

 
Equation 34 

where 𝜋𝑟𝑜𝑜𝑡 is the root length density or the length of root per volume of soil. Integration of the root 

density function over the maximum root depth, 𝑟𝑚𝑎𝑥, gives the total root length beneath a unit area. 

Normalizing the uptake distribution ensures that the normalized water uptake distribution is unity over 

the maximum root depth: 

∫ 𝜋𝑟𝑜𝑜𝑡
′

𝑟𝑚𝑎𝑥

0

𝑑𝑟 = 1.0 
Equation 35 

Finally, integration of Equation 33 over the rooting depth recovers the actual transpiration flux:  

𝑞𝐴𝑇 = ∫ 𝑞𝑟𝑜𝑜𝑡

𝑟𝑚𝑎𝑥

0

𝑑𝑟 
Equation 36 

3.3.4.1.3 Snow Melt 

The LCI boundary condition in SEEP/W calculates the water flux associated with snowmelt (in Equation 

21) based on the change in snow pack depth between time steps: 

𝑞𝑀 =
∆ℎ𝑠𝑛𝑜𝑤

∆𝑡

𝜌𝑠𝑛𝑜𝑤

𝜌𝑤
 

Equation 37 

where ∆ℎ𝑠𝑛𝑜𝑤 is the change in snow depth, ∆𝑡 is the time increment, and 𝜌𝑠𝑛𝑜𝑤 is the snow density. A 

snow depth verses time function is required to calculate snowmelt flux. Snow depth data can be 

measured or estimated using a temperature-index method (see examples).  

3.3.4.1.4 Minimum Pore-Water Pressure 

The LCI boundary condition in SEEP/W prevents over-drying via a Calculated or User-Defined minimum 

pore-water pressure function. The relative humidity ℎ𝑟 at the soil-air interface is given by the 

thermodynamic relationship: 

ℎ𝑟 = 𝑒𝑥𝑝[𝑢𝑤𝑀/(𝜌𝑤𝑅𝑇)] Equation 38 

 

where 𝑀 is the molecular mass of water, 𝜌𝑤 fresh water density, 𝑅 universal gas constant, and 𝑇 

absolute temperature. Solving for the minimum (negative) pore-water pressure 𝑢𝑤
𝑚𝑖𝑛 that could develop 

for a known air relative humidity gives: 

𝑢𝑤
𝑚𝑖𝑛 =

𝜌𝑤𝑅𝑇

𝑀
𝑙𝑛(ℎ𝑟) 

Equation 39 
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3.3.4.2 Inputs 

Table 6 presents the LCI inputs for the three different evapotranspiration methods. All three methods 

require functions for air temperature, precipitation, and relative humidity over time. Snow depth and 

snow density are optional, although the later must be defined if snowmelt is to be modelled. The 

Penman-Wilson and Penman-Monteith equations require wind speed and net radiation. SEEP/W 

provides an option to select solar radiation (incoming) so that net radiation is calculated during solve-

time (see Section 4.3.1). The Penman-Monteith equation requires vegetation height. Finally, the user-

defined option requires that potential evapotranspiration is specified over time.  

Table 6. Inputs for the land-climate interaction boundary condition.  

Evapotranspiration Method Inputs 

All Air temperature versus time 
Precipitation flux versus time 
Relative humidity    
Snow depth versus time (optional) 
Snow density (optional) 

Penman-Wilson & Penman-Monteith Wind speed versus time  
Net radiation versus time 

Penman-Monteith Vegetation height versus time 

User-Defined Potential evapotranspiration verses time 

 

Table 7 presents the vegetation data inputs required for modelling root water uptake. All 

evapotranspiration methods require inputs for leaf area index, plant moisture limiting, root depth, 

normalized root density, and soil cover fraction.  

Table 7. Inputs for root water uptake.  

Evapotranspiration Method Inputs 

All Leaf area index versus time 
Plant moisture limiting function 
Root depth versus time function 
Normalized root density 
Soil cover fraction versus time function 

 

3.3.5 Diurnal Distributions 

3.3.5.1 Air Temperature 

The air temperature at any hour of the day can be estimated from the daily maximum and minimum 

values with:  

𝑇𝑎 =
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
+

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

2
𝑐𝑜𝑠 [2𝜋 (

𝑡 − 13

24
)] 

Equation 40 
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where 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the daily maximum and minimum temperatures, respectively, and 𝑡 is the 

time in hours since 00:00:00. The approximation, which is used by Šimůnek et al. (2012) and presented 

by Fredlund et al. (2012), assumes the lowest and highest temperature to occur at 01:00 and 13:00, 

respectively. Equation 40 provides a continuous variation of the air temperature throughout the day; 

however, the diurnal distributions are discontinuous from day-to-day. A continuous function over 

multiple days is obtained by calculating 𝑇𝑎 for 𝑡 > 13: 00 using 𝑇𝑚𝑖𝑛 from the subsequent day.  

3.3.5.2 Relative Humidity 

The relative humidity at any hour of the day can be estimated from the measured daily maximum and 

minimum values in the air:  

ℎ𝑎 =
ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛

2
+

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

2
𝑐𝑜𝑠 [2𝜋 (

𝑡 − 1

24
)] 

Equation 41 

 

where ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛 are the daily maximum and minimum relative humidity, respectively, and 𝑡 is the 

time in hours since 00:00:00. The approximation, which is used by Šimůnek et al. (2012) and presented 

by Fredlund et al. (2012), assumes the lowest and highest relative humidity to occur at 13:00 and 01:00, 

respectively, which are the opposite times as the air temperature peaks. Equation 41 provides 

continuous variation of the relative humidity throughout the day; however, the diurnal distributions are 

discontinuous from day-to-day. Similar to the temperature function, the relative humidity function is 

continuous over multiple days if ℎ𝑎 for 𝑡 > 13: 00 is calculated with ℎ𝑚𝑎𝑥 from the subsequent day.  

3.3.5.3 Daily Potential Evapotranspiration 

User-defined daily PET values can be distributed across the day in accordance with diurnal variations in 

net radiation. Fayer (2000) assumes the fluxes are constant between about 0 to 6 hours and 18 to 24 

hours, and otherwise follow a sinusoidal distribution: 

𝑞𝑃𝐸𝑇 = 0.24(𝑞𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) 𝑡 < 0.264 𝑑; 𝑡 > 0.736 𝑑 Equation 42 

 

and 

𝑞𝑃𝐸𝑇 = 2.75(𝑞𝑃𝐸𝑇̅̅ ̅̅ ̅̅ )𝑠𝑖𝑛 (2𝜋𝑡 −
𝜋

2
) 0.264 𝑑 ≤ 𝑡 ≤ 0.736 𝑑 Equation 43 

 

where the daily average potential evapotranspiration flux, 𝑞𝑃𝐸𝑇̅̅ ̅̅ ̅̅ , is expressed with the same time units 

as the time variable. Equation 42 and Equation 43 produce a continuous function of instantaneous flux. 

A finite element formulation is discretized in time and assumes the flux constant over the time step. 

GeoStudio therefore obtains the potential evaporation flux by numerically integrating the function 

between the beginning and end of the step and dividing by the time increment.  
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3.3.6 Estimation Techniques 

3.3.6.1 Snow Depth 

Snow depth on the ground surface at any instant in time, ℎ𝑠𝑛𝑜𝑤, is the summation of all incremental 

snow depth accumulations minus snowmelt: 

ℎ𝑠𝑛𝑜𝑤 = ∑(∆ℎ𝑠𝑛𝑜𝑤 − ∆ℎ𝑚𝑒𝑙𝑡)

𝑡

0

 

Equation 44 

where ∆ℎ𝑠𝑛𝑜𝑤 is the incremental snow depth accumulation corrected for ablation and ∆ℎ𝑚𝑒𝑙𝑡 

represents the snowmelt over a given period.  

Snow accumulation models often use temperature near the ground surface to determine the fraction of 

precipitation falling as rain or snow (e.g., SNOW-17, Anderson, 2006). SEEP/W sets the fraction of 

precipitation occurring as snow, 𝑓𝑠, to 1.0 if the average air temperature over the time interval is less 

than or equal to the specified threshold temperature. Conversely, the snow fraction is set to 0.0 if the 

average air temperature over the time interval was greater than the threshold value. The threshold 

temperature is a model input.  

Snow accumulation over the time interval in terms of snow-water equivalent, ∆ℎ𝑠𝑤𝑒, is determined by: 

∆ℎ𝑠𝑤𝑒 = ℎ𝑃 × 𝑓𝑠 × 𝑀𝐹 Equation 45 

where ℎ𝑃 is the precipitation depth (liquid) over the time interval, and 𝑀𝐹 is a multiplier factor 

determined from the ablation constant as: 

𝑀𝐹 = 1 − 𝐴𝑏𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Equation 46 

The snow depth accumulated over the interval is then calculated as: 

∆ℎ𝑠𝑛𝑜𝑤 = ∆ℎ𝑠𝑤𝑒

𝜌𝑤

𝜌𝑠𝑛𝑜𝑤
 

Equation 47 

where the snow density, 𝜌𝑠𝑛𝑜𝑤, is input as a model parameter. 

Snowmelt is assumed to only occur when the average air temperature is greater than 0ᵒC. The daily 

snow melt depth, a model input, is used to compute snowmelt rate for a given time interval. 

3.4 Convergence 

3.4.1 Water Balance Error 

The transient water transfer equation is formulated from the principle of mass conservation. As such, an 

apparent water balance error can be calculated by comparing the cumulative change in stored mass to 

the cumulative mass of water that flowed past the domain boundaries. The error is ‘apparent’ because it 

is a mathematical by-product of non-convergence, not an actual loss of mass, since the solution 

conserves mass. 
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The software allows for inspection of mass balance errors on sub-domains. Sub-domains are essentially 

control volumes that comprise a group of elements. The elements undergo changes in stored mass 

during a transient analysis. Water enters or exits the sub-domain at nodes on the boundary of the sub-

domain and nodes inside the domain to which boundary conditions are applied (e.g., root water 

uptake).  

The cumulative mass of water that enters the domain, 𝑚̇𝑖𝑛, minus the mass of water that leaves the 

domain, 𝑚̇𝑜𝑢𝑡, plus the mass of water that is added to (or removed from) the domain, 𝑀̇𝑆, can be 

calculated by reassembling the forcing vector:   

∫ (𝑚̇𝑖𝑛 − 𝑚̇𝑜𝑢𝑡 + 𝑀̇𝑆)
𝑡

0

𝑑𝑡 = ∑ 𝑅̇𝑑𝑡

𝑡

0

 

Equation 48 

The rate of increase in the mass of water stored within the domain is: 

∫ 𝑀̇𝑠𝑡

𝑡

0

𝑑𝑡 
Equation 49 

The change in stored mass (Equation 49) is calculated in accordance with the final solution and all of the 

storage terms shown in Equation 12 and/or listed in Table 3 (e.g., thermal expansion of water). The 

calculated mass balance error is the difference between Equation 49 and Equation 48. The relative error 

is calculated by dividing the absolute error by the maximum of Equation 48 or Equation 49.  

3.4.2 Conductivity Comparison 

Convergence can also be assessed by comparing the input hydraulic conductivity functions to a scatter 

plot of the hydraulic conductivities from the penultimate iteration and the final pore water pressures. 

The points of the scatter plot will generally overlie the input hydraulic functions if the solution did not 

change significantly on the last two iterations. However, discrepancies might remain if the input 

functions are highly non-linear, even if the changes in pore-water pressures were negligible and the 

convergence criteria were satisfied (Section I.8). Therefore, evaluating convergence of non-linear 

hydraulic properties requires multiple pieces of information. In addition, a less-than-perfect match 

between the scatter plot and the input functions may sometimes be acceptable in the context of the 

modelling objectives or in light of other convergence criteria.   
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4 Heat Transfer 
TEMP/W (or TEMP3D) is a finite element program for simulating heat transfer through porous media. 

Typical applications of TEMP/W include studies of naturally occurring frozen ground (e.g., permafrost), 

artificial ground freezing (e.g., for ground stabilization or seepage control), and frost propagation (e.g., 

for insulation design for structures or roadways). Section 4.1 summarizes the heat transfer and storage 

processes that are included in the formulation, while Section 4.2 describes the constitutive models 

available to characterize the properties of the medium and Section 4.3 describes the boundary 

conditions unique to TEMP/W. 

4.1 Theory  
The TEMP/W formulation is based on the law of energy conservation or the first law of 

thermodynamics, which states that the total energy of a system is conserved unless energy crosses its 

boundaries (Incropera et al., 2007). Similarly, the rate of change of stored thermal energy within a 

specified volume must be equal to the difference in the rate of heat flux into and out of the volume, as 

described in the following equation:  

𝐸̇𝑠𝑡 ≡
𝑑𝐸𝑠𝑡

𝑑𝑡
= 𝐸̇𝑖𝑛 − 𝐸̇𝑜𝑢𝑡 + 𝐸̇𝑔 

Equation 50 

where 𝐸̇𝑠𝑡  is the rate of change in the stored thermal energy, the inflow and outflow terms, 𝐸̇𝑖𝑛 and 

𝐸̇𝑜𝑢𝑡, represent the rate of change in heat flux across the control surfaces, and 𝐸̇𝑔 is a heat sink or 

source within the control volume (𝑑𝑥 𝑑𝑦 𝑑𝑧).  

In a porous medium containing water, the rate of change in the thermal energy stored in this volume is: 

𝐸̇𝑠𝑡 = 𝑈̇𝑠𝑒𝑛𝑠 + 𝑈̇𝑙𝑎𝑡 = 𝑈̇𝑠𝑒𝑛 + 𝑈̇𝑠𝑓 + 𝑈̇𝑓𝑔 Equation 51 

where 𝑈̇𝑠𝑒𝑛𝑠 and 𝑈̇𝑙𝑎𝑡 represent the rate of change in the thermal energy associated with sensible and 

latent heat, respectively, in the control volume. The rate of change in the sensible energy is equal to 

(e.g., Andersland and Ladanyi, 2004): 

𝑈̇𝑠𝑒𝑛𝑠 = 𝐶𝑝

𝜕𝑇

𝜕𝑡
𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 52 

where 𝐶𝑝 is the volumetric heat capacity associated with the control volume. Volumetric heat capacity is 

the summation of the product of specific heat capacity, 𝑐𝑝, mass density, 𝜌, and volumetric fraction, 𝜃, 

of each component in the control volume (i.e., solid particles, water, ice, and air). 

The change in latent energy within the control volume could be due to fusion, 𝑈̇𝑠𝑓 (conversion from 

solid to liquid or liquid to solid, via freezing or melting), or due to vaporization, 𝑈̇𝑓𝑔 (conversion from 

liquid to gas or vice versa, via evaporation or condensation). The latent heat of fusion, ℎ𝑠𝑓, and 

vaporization, ℎ𝑓𝑔, represent the amount of energy required per unit mass of substance (i.e., water) to 

effect these changes in state.  
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The rate of change in the latent energy associated with fusion for water is: 

𝑈̇𝑠𝑓 = −ℎ𝑠𝑓

𝜕𝑀𝑖𝑐𝑒

𝜕𝑡
= −𝜌𝑖𝑐𝑒ℎ𝑠𝑓

𝜕𝜃𝑖𝑐𝑒

𝜕𝑡
𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 53 

where 𝑀𝑖𝑐𝑒 is the mass of ice in the control volume, 𝜃𝑖𝑐𝑒 is the volumetric ice content, and 𝜌𝑖𝑐𝑒 is the 

mass density of ice.  

The rate of change in the latent energy associated with vaporization is given by: 

𝑈̇𝑓𝑔 = ℎ𝑓𝑔

𝜕𝑀𝑣

𝜕𝑡
 

Equation 54 

where 𝑀𝑣 is the mass of vapor in the control volume. An increase in the mass of vapor is associated with 

an increase in latent energy within the control volume. Energy is released into the control volume during 

condensation and is consumed from within the control volume during vaporization.  

The inflow and outflow terms (𝐸̇𝑖𝑛 and 𝐸̇𝑜𝑢𝑡) are associated exclusively with processes occurring at the 

control surfaces. TEMP/W considers heat transfer across the boundaries via heat conduction and 

advection. The rate of change in energy associated with conduction is described by Fourier’s Law (e.g., 

Carslaw and Jaeger, 1986): 

𝑄̇𝑦 = −𝑘
𝜕𝑇

𝜕𝑦
𝑑𝑥𝑑𝑧 

Equation 55 

where 𝑘 is the thermal conductivity of the medium.  

Advection occurs when water entering or leaving the control volume transports thermal energy. The 

advective heat flux may be comprised of both sensible and latent energy transfers. The net rate at which 

sensible thermal energy enters the control volume with the flow of liquid water, water vapor, and (dry) 

air can be calculated from the respective mass flow rates, 𝑚̇: 

(
𝜕(𝑚̇𝑦𝑢𝑡(𝑦))

𝜕𝑦
)

𝑠𝑒𝑛𝑠

= 𝑐𝑤

𝜕(𝑚̇𝑤𝑇)

𝜕𝑦
+ 𝑐𝑣

𝜕(𝑚̇𝑣𝑇)

𝜕𝑦
+ 𝑐𝑎

𝜕(𝑚̇𝑎𝑇)

𝜕𝑦
 

Equation 56 

where 𝑢𝑡(𝑦) is the sensible thermal energy per unit mass calculated as the product of the temperature 

and specific heat, 𝑐, with subscripts indicating water, vapor, and air.  

Transport of vapor from one location to another constitutes a transport of energy in latent form 

because evaporation or condensation within soil liberates or consumes heat energy (Jury and Horton, 

2004). The rate of change in the latent energy due to vapor transfer into the control volume can be 

computed by: 

(
𝜕(𝑚̇𝑦𝑢𝑡(𝑦))

𝜕𝑦
)

𝑙𝑎𝑡

= ℎ𝑓𝑔

𝜕𝑚̇𝑣

𝜕𝑦
 

Equation 57 
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where 𝑚̇𝑣 represents the mass flow rate of water vapor entering the control volume.  

Substitution and expansion of the foregoing rate equations into the conservation statement and division 

by the dimensions of the control volume gives: 

(𝐶𝑝 + 𝜌𝑤ℎ𝑠𝑓

𝜕𝜃𝑢𝑤𝑐

𝜕𝑇
)

𝜕𝑇

𝜕𝑡
+ ℎ𝑓𝑔

𝜕𝑀𝑣

𝜕𝑡

=
𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) − 𝑐𝑤

𝜕(𝑚̇𝑤
" 𝑇)

𝜕𝑦
− 𝑐𝑣

𝜕(𝑚̇𝑣
" 𝑇)

𝜕𝑦
− 𝑐𝑎

𝜕(𝑚̇𝑎
" 𝑇)

𝜕𝑦
− ℎ𝑓𝑔

𝜕𝑚̇𝑣
"

𝜕𝑦
 

Equation 58 

where the double prime indicates a mass flux and 𝜃𝑢𝑤𝑐 is the unfrozen volumetric water content. 

Equation 58 can be simplified by ignoring forced-convection heat transfer and the latent heat of 

vaporization, giving:  

𝐶𝑎𝑝

𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) 

Equation 59 

where the apparent volumetric heat capacity, 𝐶𝑎𝑝 , is defined as: 

𝐶𝑎𝑝 = 𝐶𝑝 + 𝜌𝑤ℎ𝑠𝑓

𝜕𝜃𝑢𝑤𝑐

𝜕𝑇
 

Equation 60 

Table 8 provides a complete list of the physical processes included in the partial differential equation 

solved by TEMP/W.  

Table 8. Summary of the physical processes included in the TEMP/W formulation.  

Physical Process GeoStudio Products 

Storage: sensible energy TEMP/W 

Storage: latent heat of fusion (freeze/thaw) TEMP/W 

Storage: latent heat of vaporization (vaporization/condensation) TEMP/W + SEEP/W 

Flow: conduction TEMP/W 

Flow: sensible heat advection with water transfer TEMP/W + SEEP/W 

Flow: sensible heat advection with vapor transfer TEMP/W + SEEP/W 

Flow: sensible heat advection with air transfer TEMP/W + SEEP/W + AIR/W 

Flow: net latent energy transfer TEMP/W + SEEP/W 

 

The key elements of the TEMP/W formulation are as follows: 

• The default physical processes in TEMP/W include conduction heat transfer and changes in 

stored sensible energy and latent heat of fusion.  
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• Advection heat transfer with flowing water and air – also referred to as forced convection – can 

be simulated by coupling TEMP/W with SEEP/W and AIR/W, respectively.  

• A SEEP/W analysis that includes vapor transfer is required to evaluate the effects of vapor on 

heat transfer.  

• The latent heat of vaporization, ℎ𝑠𝑓, and temperature at which phase change occurs are 

properties of the analysis, not a material model input.  

4.2 Material Models 
The TEMP/W material models characterize the ability of a porous medium to store and transmit heat. 

The soil storage property quantifies the change in sensible energy, 𝑈̇𝑠𝑒𝑛𝑠,  in response to changes in 

temperature and changes in the amount of latent energy associated with fusion, 𝑈̇𝑠𝑓. The thermal 

conductivity represents the ability of the porous medium to transmit heat in response to the 

temperature gradients (Equation 55).  

4.2.1 Full Thermal 

Table 9 summarizes the inputs required by the full thermal material model. Changes in sensible energy 

are characterized by volumetric heat capacity parameters for the unfrozen and frozen states, and the in 

situ volumetric water content. Thermal conductivity is a function of temperature, so it is indirectly a 

function of the portion of ice within the pore space (e.g., Andersland and Ladanyi, 2004).  

Table 9. Parameters for the full thermal material model. 

Parameter Symbol Unit 

Thermal Conductivity function 𝑘(𝑇) J/s/m/K  (W/m/K) 

Volume Heat Capacity: Unfrozen  𝐶𝑝 J/m3/K 

Volume Heat Capacity: Frozen 𝐶𝑝 J/m3/K 

Normalized Unfrozen Volumetric 
Water Content function 

𝜃′
𝑢𝑤𝑐 =

𝜃𝑢𝑤𝑐

𝑛
(𝑇) 

 

In situ Volumetric Water Content 𝜃𝑤 = 𝑛  

 

The normalized unfrozen volumetric water content, 𝜃′
𝑢𝑤𝑐, is a function of temperature (Figure 3; e.g., 

Spaans and Baker, 1996; Flerchinger et al., 2006; Andersland and Ladanyi, 2004). This functional 

relationship controls the rate of change in the latent energy of fusion per degree temperature change, 

according to the second term on the left side of Equation 58. The normalized unfrozen volumetric water 

content acknowledges that water within a porous medium changes phase over a temperature range 

(Figure 3; see Section 4.2.4.1).  
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Figure 3. Example of an unfrozen water content versus temperature function.  

 

4.2.2 Simplified Thermal 

Table 10 summarizes the inputs required by the simplified thermal material model. The simplified 

thermal constitutive model assumes that all latent heat is released or adsorbed at a single phase change 

temperature. The change in volumetric ice content required by Equation 58 is assumed equal to the 

specified in situ volumetric water content.  

Table 10. Parameters for the simplified thermal material model. 

Parameter Symbol Unit 

Thermal Conductivity: Unfrozen 𝑘 J/s/m/K  

Thermal Conductivity: Frozen 𝑘 J/s/m/K  

Volume Heat Capacity: Unfrozen  𝐶𝑝 J/m3/K 

Volume Heat Capacity: Frozen 𝐶𝑝 J/m3/K 

In situ Volumetric Water Content 𝜃𝑤  

 

The energy storage capacity for the simplified thermal model is defined in the same manner as the full 

thermal model: a volume heat capacity for both the frozen and unfrozen states. Similarly, conduction is 

characterized by specifying the thermal conductivity of the medium for the frozen and unfrozen states.  

4.2.3 Coupled Convective 

The coupled convective thermal material model can be used when the thermal properties of a material 

vary with volumetric water content. For example, this material model can be used when forced 

convection (or energy advection) is also being simulated. The fundamental difference between the 

coupled convective and full thermal material models is the assumption regarding volumetric water 

content. A full thermal material model assumes that the volumetric water content is constant 
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throughout the analysis, such that the frozen/unfrozen volume heat capacities are constant and the 

thermal conductivity is only a function of temperature. However, in a coupled heat and water transfer 

analysis, the volumetric water content within the domain is known, so the thermal properties can be 

defined as a function of the volumetric water content for the unfrozen state. The practical implication of 

these relationships is that the thermal properties can vary throughout the domain with changes in 

volumetric water content. Table 11 summarizes the inputs required by the coupled convective model.  

Table 11. Parameters for the coupled convective material model. 

Parameter Symbol Unit 

Thermal Conductivity  𝑘′ = 𝑘(𝜃𝑤) J/s/m/K 

Volume Heat Capacity 𝐶′𝑝 = 𝐶𝑝(𝜃𝑤) J/m3/K 

Normalized Unfrozen Volumetric 
Water Content function 

𝜃′
𝑢𝑤𝑐 =

𝜃𝑢𝑤𝑐

𝑛
(𝑇) 

 

 

The coupled convective model adjusts the thermal conductivity and volumetric heat capacity if the 

temperature is below the phase change value (after Johansen, 1975). The porosity and total volumetric 

water content of the soil are known from the water transfer analysis. The unfrozen volumetric water 

content is calculated from the normalized function, 𝜃′
𝑢𝑤𝑐, at the current temperature as: 

𝜃𝑢𝑤𝑐  = 𝑛𝜃′
𝑢𝑤𝑐(𝑇) Equation 61 

The volumetric ice content is the difference between the unfrozen and frozen water contents as:  

𝜃𝑖𝑐𝑒 = 𝜃𝑤 − 𝜃𝑢𝑤𝑐  Equation 62 

The thermal conductivity of the soil in the partially frozen state, 𝑘𝑝𝑓, is calculated via linear interpolation 

as: 

𝑘𝑝𝑓 = 𝑘′ +
𝜃𝑖𝑐𝑒

𝜃𝑤
[𝑘𝑓 − 𝑘′] 

Equation 63 

where 𝑘′ is the thermal conductivity at a given volumetric water content, and 𝑘𝑤 is the thermal 

conductivity of liquid water. The thermal conductivity of the soil in a completely frozen state, 𝑘𝑓, is 

calculated as:  

𝑘𝑓 = 𝑘𝑠
(1−𝑛)𝑘𝑖𝑐𝑒

(𝜃𝑤) Equation 64 

where 𝑘𝑖𝑐𝑒 is the thermal conductivity of ice and the volumetric water content, 𝜃𝑤, is equal to the 

volumetric ice content, 𝜃𝑖𝑐𝑒.  
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Finally, the thermal conductivity of the solids fraction, 𝑘𝑠, is calculated assuming the soil is unfrozen: 

𝑘𝑠 = [
𝑘′

(𝑘𝑤)𝜃𝑤
]

(
1

1−𝑛
)

 

Equation 65 

The volumetric heat capacity of the soil in the partially or fully frozen state is calculated as: 

𝐶𝑝𝑓 = (1 − 𝑛)𝐶𝑠 + 𝜃𝑢𝑤𝑐𝐶𝑤 + 𝜃𝑖𝑐𝑒𝐶𝑖𝑐𝑒 + 𝜃𝑎𝐶𝑎 Equation 66 

The volumetric heat capacity of the solids fraction, 𝐶𝑠, is calculated assuming the soil unfrozen as: 

𝐶𝑠 =
1

1 − 𝑛
 (𝐶′𝑝 − 𝜃𝑤𝐶𝑤 − 𝜃𝑎𝐶𝑎) 

Equation 67 

where 𝐶′𝑝 is the volumetric heat capacity of a soil at a given water content, 𝐶𝑤 is the volumetric heat 

capacity of water, 𝐶𝑎 is the volumetric heat capacity of air, and 𝜃𝑎 is the volumetric air content.  

4.2.4 Estimation Techniques 

4.2.4.1 Normalized Unfrozen Volumetric Water Content Function 

Various empirical or semi-empirical methods estimate the unfrozen volumetric water content function 

(e.g., Flerchinger et al., 2006; Spaans and Baker, 1996). GeoStudio provides a number of sample 

functions for the normalized unfrozen volumetric water content based on a range of soil particle size 

distributions (clay to gravel). These sample functions were generated by first calculating the change in 

water pressure for a shift in the freezing point temperature via the Clausius–Clapeyron thermodynamic 

equilibrium equation. The (negative) pore-water pressure at the freezing point temperature is then used 

to obtain the corresponding volumetric water content from the sample function referred to in Section 

3.2.2.1. The volumetric water content is then normalized by the soil porosity and cross-plotted against 

the freezing point temperature to obtain a function similar to that shown in Figure 3.   

4.2.4.2 Volumetric Heat Capacity, 𝑪𝒑(𝜽) 

The functional relationship between volumetric heat capacity and volumetric water content of an 

unfrozen soil, as required by the Coupled Convective Model (Section 4.2.3), can be estimated by (de 

Vries, 1975):  

𝐶𝑝 =  𝑐𝑠𝜌𝑠(1 − 𝑛) + 𝜃𝑤𝐶𝑤 Equation 68 

where the specific heat capacity of the solids fraction, 𝑐𝑠,  is defined by the user, and 𝜌𝑠 is the solids 

density. The volumetric heat capacity of air is not included in Equation 68.  

4.2.4.3 Thermal Conductivity, 𝒌(𝑻) 

The functional relationship between thermal conductivity and temperature required by the Full Thermal 

Model (Section 4.2.1) can be estimated as:  
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𝑘 = 𝑘𝑢 + (𝑀𝐹)(𝑘𝑓 − 𝑘𝑢) Equation 69 

where 𝑘𝑢 is the user defined unfrozen thermal conductivity, 𝑘𝑓 is the user defined frozen thermal 

conductivity, and 𝑀𝐹 is a modifier factor uniquely defined for a range of freezing point temperatures. 

The modifier factor-temperature relationships are predefined for a range of particle size distributions 

based on measured data (e.g., Johansen, 1975).  

4.2.4.4 Thermal Conductivity, 𝒌(𝜽) 

The functional relationship between thermal conductivity and volumetric water content of an unfrozen 

soil, as required by the Coupled Convective Model (Section 4.2.3), can be estimated by (Johansen, 1975; 

Farouki, 1981; Newman, 1995):  

𝑘′ = (𝑘𝑠𝑎𝑡 − 𝑘𝑑𝑟𝑦) (0.85 log (
𝜃

𝑛
) + 1.0) + 𝑘𝑑𝑟𝑦 

Equation 70 

where the thermal conductivity for the saturated condition, 𝑘𝑠𝑎𝑡, is (refer to Equation 65): 

𝑘𝑠𝑎𝑡 = 𝑘𝑤
𝑛[𝑘𝑠

(1−𝑛)
] Equation 71 

where the mineral (solids) thermal conductivity is defined by the user. The thermal conductivity for the 

dry condition, 𝑘𝑑𝑟𝑦, is given by: 

𝑘𝑑𝑟𝑦 =
0.137𝜌𝑑 + 64.7

2700 − 0.947𝜌𝑑
 

Equation 72 

where the bulk dry density of a soil is estimated as: 

𝜌𝑑 = 𝜌𝑠

1 − 𝑛

1 + 𝑛
 

Equation 73 

4.3 Boundary Conditions 

4.3.1 Surface Energy Balance 

The thermal response of a ground profile subject to climate conditions is generally considered a coupled 

soil-atmosphere process because the thermal energy flux (and concomitant ground surface 

temperatures) are dependent on water transfers across the ground surface, and the water transfers also 

depend on the ground surface temperatures. This coupled process can be modelled with the surface 

energy balance (SEB) boundary condition, which has the potential to reflect various ground surface 

conditions including bare, snow-covered, or vegetated ground. A boundary condition of this type can be 

used to simulate cyclic changes in ground temperatures for the purpose of exploring frost protection 

layers below trafficable surfaces, insulation configurations for foundations, or studying the preservation 

of frost in permafrost zones, mine wastes or soil covers.  
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4.3.1.1 Surface Energy Balance Equation 

The SEB boundary condition represents a mathematical description of the energy transfers between the 

ground surface and the atmosphere. The amount of energy transmitted to the earth surface from the 

sun is the difference between the net solar (shortwave) and net terrestrial (longwave) radiation (i.e., net 

radiation). The net radiation drives a number of processes including evaporation (latent energy), 

warming or cooling of the air (sensible energy) and ground heat flux, and other smaller energy-

consuming processes such as photosynthesis. The surface energy balance equation can be written for a 

heat transfer analysis as follows: 

(𝑞𝑛𝑠 − 𝑞𝑛𝑙) = 𝑞𝑠𝑒𝑛𝑠 + 𝑞𝑙𝑎𝑡 + 𝑞𝑔 Equation 74 

where 

𝑞𝑛𝑠 Net solar (shortwave) radiation 
𝑞𝑛𝑙 Net terrestrial (longwave) radiation 

(𝑞𝑛𝑠 − 𝑞𝑛𝑙) Net radiation 
𝑞𝑠𝑒𝑛𝑠 Sensible heat flux 
𝑞𝑙𝑎𝑡  Latent heat flux 
𝑞𝑔  Ground heat flux 

 

The energy terms in this equation are fluxes, defined as the amount of energy that flows through a unit 

area per unit time. Equation 74 uses the sign convention of Sellers (1965) such that net radiation is 

positive downwards (toward the surface). As a result, latent and sensible heat fluxes are positive 

upwards (away from the surface), and ground heat flux is positive downward (into the ground). The 

energy balance equation states that all energy received at the earth’s surface must be used to warm or 

cool the air above the ground surface, evaporate water, or warm or cool the ground profile.  

The principal objective of conducting a TEMP/W analysis is to determine the thermal response of the 

ground subject to a given set of boundary conditions. Boundary conditions for heat transfer problems 

generally fall into two categories: 1) first type (i.e., temperature); or 2) second type (i.e., heat flux or 

heat transfer rate). The SEB boundary condition is calculated by solving the surface energy balance 

(Equation 74) as: 

𝑞𝑔 = (𝑞𝑛𝑠 − 𝑞𝑛𝑙) − 𝑞𝑠𝑒𝑛𝑠 − 𝑞𝑙𝑎𝑡 Equation 75 

As a result, the ground heat flux is calculated as the remaining energy flux after the other fluxes are 

satisfied.  

4.3.1.1.1 Net Solar (Shortwave) Radiation 

Most environmental processes operative at the surface of the earth are driven by solar radiation from 

the sun. On average, the earth receives around 118 MJ/m2/day (0.0820 MJ/m2/min) of solar radiation at 

the outer edge of the atmosphere (Allen et al., 1998). This quantity of solar radiation, termed the solar 

constant, occurs when the sun is directly overhead, so that the angle of incidence is zero. The local 



 

32 
 

intensity of the sun’s radiation depends on the position of the sun relative to the position on earth. 

Consequently, the extraterrestrial radiation is a function of latitude, date, and time of day as follows: 

𝑞𝑒𝑥𝑡 =
1

𝜋
𝐺𝑠𝑐𝑑𝑟[𝜔𝑠 sin 𝜑 sin 𝛿 + cos 𝜑 cos 𝛿 sin 𝜔𝑠] 

Equation 76 

where 

𝑞𝑒𝑥𝑡 Extraterrestrial radiation 
𝐺𝑠𝑐 Solar constant = 118 MJ/m2/day 
𝑑𝑟 Inverse relative distance from earth to sun 
𝜔𝑠 Sunset hour angle 
𝜑 Latitude 
𝛿 Solar declination 

 

The inverse relative distance to the earth and the solar declination are given by: 

𝑑𝑟 = 1 + 0.033 cos (
2𝜋

365
𝐽) 

Equation 77 

and 

𝛿 = 0.409 sin (
2𝜋

365
𝐽 − 1.39) 

Equation 78 

where 𝐽 is the day of the year between 1 (January 1st) and 365 (December 31st) or 366 during a Leap 

Year. The solar declination represents the angle between the equatorial plane and a straight line joining 

the centres of the earth and sun.  

The sunset hour angle, 𝜔𝑠, is given by: 

𝜔𝑠 = cos−1(− tan 𝜑 tan 𝛿) Equation 79 

Some of the extraterrestrial radiation is scattered, reflected, or absorbed by atmospheric gases, clouds, 

and dust before reaching earth’s surface. The radiation reaching a horizontal plane on the earth’s 

surface is the shortwave radiation. Cloud cover has a significant effect on shortwave radiation. 

Approximately 75% of extraterrestrial radiation reaches the earth’s surface on a clear day (FAO, 1998). 

In contrast, only 25% reaches the earth’s surface with extremely dense cloud cover. Ideally, the 

shortwave solar radiation at a specific site is measured; however, the Angstrom formula estimates the 

shortwave radiation by: 

𝑞𝑠 = (𝑎𝑠 + 𝑏𝑠

𝑛

𝑁
) 𝑞𝑒𝑥𝑡 

Equation 80 
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where 

𝑞𝑠 Shortwave radiation 
𝑛 Actual duration of sunlight 
𝑁 Maximum possible duration of sunshine or daylight 

𝑞𝑒𝑥𝑡 Extraterrestrial radiation 
𝑎𝑠, 𝑏𝑠 Regression constants 

𝑎𝑠 + 𝑏𝑠 Fraction of 𝑞𝑒𝑥𝑡 reaching the earth on clear days (𝑛 =  𝑁) 
 

The constants 𝑎𝑠 and 𝑏𝑠 are generally calibrated to measurements for a given site over some length of 

time such that long-term predictions of net radiation are consistent with site conditions. However, when 

data is not available, the values are assumed to be 0.25 and 0.5, respectively (FAO, 1998). The maximum 

number of daylight hours for a given day is determined by: 

𝑁 =
24

𝜋
𝜔𝑠 

Equation 81 

The extraterrestrial and shortwave radiation estimated at a latitude of 52.17 degrees using Equation 76 

and Equation 80, respectively, are illustrated in Figure 4. This estimation assumes a clear sky (i.e., 𝑛 =

 𝑁); consequently, the ratio of 𝑞𝑠 𝑞𝑒𝑥𝑡⁄  is constant (0.75) for every day of the year.  

 

 

Figure 4. Estimated extraterrestrial and shortwave radiation at Latitude 52.17 degrees (𝒂𝒔 = 𝟎. 𝟐𝟓; 𝒃𝒔 = 𝟎. 𝟓). 

 

The earth’s surface reflects a considerable amount of solar radiation back into the atmosphere. The 

reflected portion is known as the albedo, 𝛼, and it is dependent on the surface characteristics (among 
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other parameters). For example, the albedo of green vegetation is approximately 0.23 while that of 

fresh white snow is approximately 0.95 (FAO, 1998). The net solar radiation reaching the earth’s surface 

(direct and diffuse), 𝑞𝑛𝑠, also known as the short-wave radiation, is given as: 

𝑞𝑛𝑠 = (1 − 𝛼)𝑞𝑠 Equation 82 

where the net solar radiation is measured on a horizontal surface. The albedo is often based on field 

measurements or is estimated from literature values.  

If the net solar radiation is measured directly, albedo can be used as a calibration coefficient. In that 

case, albedo incorporates the reflective property of the surface as well as a parameterization for cloud 

cover (as above) and angle of incidence/shadowing. The latter is important in hilly terrain in which some 

portion of the ground might be obstructed from direct sunlight. Dingman (2008) demonstrates 

procedures for incorporating all of these effects. A simple modification to Equation 82 for shadowing 

effects results in the expression: 

𝑞𝑛𝑠 = (1 − 𝛼)𝑞𝑠 × 𝑉𝐹 Equation 83 

where 𝑉𝐹 is a view factor (which varies from 0 to 1) to account for angle of incidence and shadowing.  

4.3.1.1.2 Net (Terrestrial) Longwave Radiation 

A portion of the net solar radiation incident on the earth’s surface is absorbed and converted into heat 

energy. Radiation is emitted from any heated surface due to the thermal energy of the surface matter. 

The rate of energy release per unit area of heated surface is the surface emissive power (Incropera et 

al., 2007). The upper limit to the emissive power, 𝐸𝑏, is achieved only by a surface called an ideal 

radiator (or blackbody), and is described by the Stefan-Boltzmann law: 

𝐸𝑏 = 𝜎𝑇𝑔
4 Equation 84 

where 

𝜎 Stefan-Boltzmann constant = 4.903×10-9 MJ/K4/m2/day = 5.67×10-8  W/m2/K4 

𝑇𝑔 Absolute temperature of the (ground) surface 

 

The energy emitted by a real surface, known as the long-wave radiation, 𝐸, is less than that of a 

blackbody at the same temperature and is given by: 

𝐸 = 𝜀𝑠𝜎𝑇𝑔
4 Equation 85 

where 𝜀𝑠 is the surface emissivity and is a value between 0.0 and 1.0. The surface emissivity provides a 

measure of how efficiently a surface emits energy relative to a blackbody. Sellers (1965) reports values 

of emissivity for dry and moist ground in the range of 0.9 to 0.98. Saito and Simunek (2009) present 

various approaches for computing emissivity as a function of water content for bare ground (i.e., no 

vegetation). TEMP/W assumes a value of 0.95 for estimating longwave radiation.  
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Some portion of the emitted long-wave radiation is lost into space. A portion is absorbed by water vapor 

and CO2 in the atmosphere (including cloud cover). The longwave radiation adsorbed by the atmosphere 

increases its temperature and the atmosphere then radiates energy back toward the ground surface. 

Consequently, the earth’s surface both emits and receives longwave radiation. The net longwave 

radiation is given by (van Bavel and Hillel, 1976): 

𝑞𝑛𝑙 = 𝜀𝑠𝜎𝑇𝑔
4 −  𝜀𝑎𝜀𝑠𝜎𝑇𝑎

4 Equation 86 

where 𝜀𝑎 and 𝑇𝑎 are the air emissivity and air temperature, respectively. Expressions for air emissivity 

vary in the literature. Saito and Simunek (2009) presented air emissivity as a function of near-surface 

vapor pressure and/or air temperature. However, Saito and Simunek (2009) noted that most of the 

equations performed poorly for their test site. For simplicity, the following expression given by Idso 

(1981) is used: 

𝜀𝑎 = 0.70 + 5.95 × 10−5𝑢𝑎𝑒(1500 𝑇𝑎⁄ ) Equation 87 

where the atmospheric vapor pressure, 𝑝𝑣
𝑎, is calculated using the relationship proposed by Buck (1981) 

with an assumed relative humidity of 50%.  

4.3.1.1.3 Sensible Heat Flux 

Sensible heat flux is a convective heat transfer mechanism that derives its name from the ability to 

sense a temperature change caused by energy movement. Sensible heat transport occurs between a 

moving fluid (i.e., air) and a bounding surface (i.e., the ground) when the two are at different 

temperatures (Incropera et al., 2007). Convective heat transfer involves the combined processes of 

conduction (i.e., diffusion of heat through the still boundary layer next to the solid) and heat transfer by 

bulk fluid flow, a process referred to as heat advection. Positive sensible heat flux is upward or away 

from the surface and occurs when the ground surface is warmer than the air temperature. The rate 

equation is of the form: 

𝑞𝑠𝑒𝑛𝑠 = ℎ(𝑇𝑔 − 𝑇𝑎) Equation 88 

where ℎ is the heat transfer coefficient and the air temperature is usually measured at a reference 

height of 2 m (FAO, 1998). 

The heat transfer coefficient attempts to accommodate a number of factors, including wind speed and 

surface roughness. Expressions for the heat transfer coefficient vary in the literature. Saito and Simunek 

(2009) present an equation for sensible heat flux that is in keeping with Dingman (2008). The equation 

is:  

𝑞𝑠𝑒𝑛𝑠 = 𝐶𝑎

(𝑇𝑔 − 𝑇𝑎)

𝑟𝑎
 

Equation 89 

where 𝑟𝑎 is the aerodynamic resistance to water vapor or heat flow from a soil surface to the 

atmosphere, and 𝐶𝑎 is the volumetric heat capacity of air. 
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The aerodynamic resistance can be expressed as: 

𝑟𝑎 =
1

𝑢𝑘2
[𝑙𝑛 (

𝑧𝑟𝑒𝑓 − 𝑑 + 𝑧ℎ

𝑧ℎ
) + yℎ] × [𝑙𝑛 (

𝑧𝑟𝑒𝑓 − 𝑑 + 𝑧𝑚

𝑧𝑚
) + y𝑚] 

Equation 90 

where 

𝑢 Wind speed 
𝑘 von Karman’s constant = 0.41 

𝑧𝑟𝑒𝑓 Reference height for measurements (typically 1.5 m) 

𝑑 Zero-plane displacement height 
𝑧ℎ,𝑚 Surface roughness height for heat and momentum flux, respectively 
yℎ,𝑚 Atmospheric stability correction factor for momentum and heat flux  

 

The zero-plane displacement height, 𝑑, is generally assumed to be 2/3 the vegetation height, while the 

surface roughness values, 𝑧ℎ and 𝑧𝑚, are assumed to be 0.1 and 0.123 times the vegetation height, 

respectively (Dingman, 2008; Saito and Simunek, 2009). The typical surface roughness height for bare 

ground is 0.001 m, with a zero-plane displacement height of zero. It is generally assumed that the 

resistance to momentum and heat flow are the same, so the heat and momentum flux surface 

roughness values are assumed equivalent (i.e., 𝑧ℎ = 𝑧𝑚).  

The atmospheric stability correction factors for momentum and heat flux are assumed equal. In general, 

determination of the factors requires an iterative solution. Saito and Simunek (2009) found that a 

simplified correction, which was developed by Koivusalo et al. (2001), performed equally as well. The 

correction requires the calculation of the Richardson number, 𝑅𝑖, as: 

𝑅𝑖 =
𝑔 (𝑧𝑟𝑒𝑓)(𝑇𝑎 − 𝑇𝑔)

(𝑇𝑎)𝑢2
 

Equation 91 

The stability correction for stable and unstable conditions is: 

y = (1 − 10𝑅𝑖)−1 for Ri < 0 
y = (1 + 10𝑅𝑖)−1 for Ri > 0 

Equation 92 

 

The aerodynamic resistance is calculated by setting y = 0 in Equation 90, which yields the neutral 

aerodynamic resistance, 𝑟𝑎𝑎. The aerodynamic resistance is then calculated using the non-zero value of 

the stability correction from Equation 92: 

𝑟𝑎 =  𝑟𝑎𝑎y Equation 93 

4.3.1.1.4 Latent heat flux 

Latent heat refers to the amount of energy released or absorbed by water during a change of state that 

occurs without changing its temperature. The term latent infers that energy is being stored in the water 

molecules and can be released during condensation. The latent heat of vaporization of water is 2.45 

MJ/kg at 20 °C; thus, it takes 2.45 MJ of energy to evaporate 1 kg of water, which is equivalent to 1 mm 
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of water over a square meter of area given a water density of 1000 kg/m3. The latent heat flux in 

Equation 74 is given by: 

𝑞𝑙𝑎𝑡 = 𝐴𝐸 (
1

1000
) 𝜌𝑤ℎ𝑠𝑓 

Equation 94 

where 𝐴𝐸 is the actual evapotranspiration. The actual evaporation can be established using two options 

in TEMP/W: 1) user-defined; and, 2) ‘From Water Transfer Analysis’. The first option requires the 

definition of an AE verses time function using measured or estimated data. The second option requires a 

SEEP/W analysis with a land-climate interaction boundary condition.  

4.3.1.1.5 Accommodating the Snowpack 

The surface energy balance equation can be re-written to accommodate the presence of snow during 

the winter months as: 

𝑞𝑠𝑛𝑜𝑤 = 𝑞𝑔 = (𝑞𝑛𝑠 − 𝑞𝑛𝑙) − 𝑞𝑠𝑒𝑛𝑠 − 𝑞𝑙𝑎𝑡 Equation 95 

where the energy flux through the snow, 𝑞𝑠𝑛𝑜𝑤, is assumed equal to the ground heat flux. This 

assumption requires that the snow has no capacity to store energy. For implementation purposes, 

Equation 95 is recast as: 

0 = −(𝑞𝑛𝑠 − 𝑞𝑛𝑙) + 𝑞𝑠𝑒𝑛𝑠 + 𝑞𝑙𝑎𝑡 + 𝑞𝑠𝑛𝑜𝑤 Equation 96 

The sensible heat flux (Equation 89) and net longwave radiation (Equation 86) are calculated using the 

temperature at the top of the snow (not the ground temperature). The energy flux through the snow is 

given by: 

𝑞𝑠𝑛𝑜𝑤 = −𝑘𝑠𝑛𝑜𝑤

(𝑇𝑔 − 𝑇𝑠𝑛𝑜𝑤)

ℎ𝑠𝑛𝑜𝑤
 

Equation 97 

where 

𝑘𝑠𝑛𝑜𝑤 Thermal conductivity of snow 
𝑇𝑠𝑛𝑜𝑤 Temperature at snow surface 

𝑇𝑔 Temperature at ground surface 

ℎ𝑠𝑛𝑜𝑤 Depth of snow 
 

The implicit assumption of this approach is that the specific heat capacity (i.e., the ability to store or 

release energy) of the snow pack is negligible relative to the energy flux through the snow. A downward 

heat flux through the snow is considered positive as this implies warming of the ground. Latent heat flux 

is assumed to be zero during the winter.  

4.3.1.2 Inputs  

Table 12 summarizes the most rigorous inputs for the SEB boundary condition associated with each of 

the energy flux components. The net radiation energy flux drives the other processes and is naturally a 

principal input for the SEB boundary condition. To calculate sensible heat flux, both the air temperature 
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and wind speed functions are required. The snow depth and vegetation height functions are optional. 

TEMP/W assumes bare ground conditions if the vegetation depth function is not defined. Similarly, an 

evaporative flux of zero is assumed if the function is not defined. 

Table 12. Inputs for the surface energy balance boundary condition.  

Energy Flux Inputs 

Net radiation flux Net radiation flux versus time (i.e., measured)    

Sensible heat flux Air temperature versus time  
Wind speed versus time 
Vegetation height versus time (optional) 

Latent heat flux Actual evaporation versus time or SEEP/W results 

Ground heat flux Snow depth versus time (optional) 
Snow pack thermal conductivity 

 

The net radiation flux may not be available for some sites. As such, the user can elect to input the 

incoming solar radiation flux (Table 13). There are two options: 1) measured solar radiation flux data; or, 

2) estimated solar radiation flux given a user-defined latitude (Equation 76). In either case, an albedo 

function must be defined such that the net solar radiation can be calculated according to Equation 82. 

The net longwave radiation is computed with Equation 86 and the net radiation is calculated as the 

difference between net shortwave and net longwave radiation (Equation 74). 

Table 13. Alternative inputs for the SEB boundary condition if net radiation flux is not measured.  

Alternative Equation Inputs 

Measured solar radiation -- • Measured solar radiation flux versus time  

• Albedo versus time   

Estimated solar radiation Equation 80 • Estimated solar radiation flux versus time 

• Albedo versus time  

4.3.2 n-Factor 

The n-Factor boundary condition uses the ratio of the ground surface and air freeze/thaw indexes to 

calculate the simulated ground surface temperature. Each index is computed as the integral (or area) of 

the temperature versus time function that lies above (thawing) or below (freezing) the phase change 

temperature (𝑇0), such that 

𝑛 =
𝐼𝑔

𝐼𝑎
=

∫ (𝑇0 − 𝑇𝑔)d𝑡
𝑡𝑔

0

∫ (𝑇0 − 𝑇𝑎)d𝑡
𝑡𝑎

0

 Equation 98 

where 𝑡𝑔, 𝑡𝑎 are the durations of the ground surface and air freeze/thaw seasons, respectively; and 𝑇𝑔, 

𝑇𝑎 are the ground surface and air temperatures, respectively. The mean ground surface temperature, 

for the freeze or thaw season, can therefore be computed as 
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𝑇𝑔
̅̅̅ = 𝑛(𝑇𝑎

̅̅ ̅ − 𝑇0)
𝑡𝑎

𝑡𝑠
+ 𝑇0 Equation 99 

where 𝑇𝑎
̅̅ ̅ is the mean air temperature for the corresponding season. The ground surface temperature at 

an instant in time can be computed from the air temperature by simplifying the equation as follows: 

𝑇𝑔 = 𝑛(𝑇𝑎 − 𝑇0) + 𝑇0 Equation 100 

4.3.2.1 Inputs 

The inputs for the n-Factor boundary condition are: 

• Air temperature as a function of time  

• n-Factor for thawing conditions 

• n-Factor for freezing conditions 

 

The magnitude of freezing and thawing n-Factors depends on the climatic conditions, as well as on the 

material type at the ground surface. 

4.3.3 Convective Surface and Thermosyphon 

The Convective Surface and Thermosyphon boundary conditions both apply Newton’s Law of Cooling to 

calculate a heat flux. The heat flux is then: a) numerically integrated over a surface area to apportion an 

energy flux to the nodes associated with the surface (second-type); or b) multiplied by a user entered 

convective surface area (e.g., perimeter of pipe x 1 unit length into page) to obtain an energy rate 

applied to a single node.  

4.3.3.1 Newton’s Law of Cooling 

Convective heat transport is assumed to occur between a moving fluid and a bounding surface when the 

two are at different temperatures (Incropera et. al, 2007). Convective heat transfer involves the 

combined processes of conduction (i.e., diffusion of heat through the still boundary layer next to the 

solid surface) and heat transfer by bulk fluid flow, referred to as heat advection. The rate equation 

describing convective heat transfer (Newton’s Law of Cooling) is: 

𝑞𝑠𝑢𝑟 = ℎ(𝑇𝑠𝑢𝑟 − 𝑇∞) Equation 101 

where 𝑞𝑠𝑢𝑟 is the surface heat flux due to convection, ℎ is the convection heat transfer coefficient, 𝑇𝑠𝑢𝑟 

temperature of the bounding surface, and 𝑇∞ the temperature of the fluid outside the thermal 

boundary layer. The thermal boundary layer develops in response to the velocity boundary layer – the 

zone in which there are high velocity gradients. A positive heat flux indicates energy transfer from a 

warm surface to a cooler fluid.  

4.3.3.2 Inputs: Convective Surface 

The inputs for the convective surface boundary condition are: 

• Fluid temperature as a function of time  

• Convective heat transfer coefficient, ℎ, versus time 

• Convective surface area (only if the boundary condition is applied to a point) 
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A convective surface boundary condition can be used to simulate artificial ground freezing or other 

processes that involve fluid flow over a surface. For example, Andersland and Ladanyi (2004) explore the 

use of a convective surface boundary condition to represent the surface energy balance at the ground 

surface. For cases involving internal flow through a conduit, heat transfer occurs by conduction through 

the conduit wall and then by convective heat transfer from the inside wall of the conduit into the 

flowing fluid. In a numerical analysis, however, the convection heat transfer coefficient embodies the 

conditions within the boundary layer, as well as the heat transfer characteristics and geometry of the 

conduit. Thus, the boundary condition is applied at the outside conduit wall.  

The area of the convective surface is calculated via numerical integration if the boundary condition is 

applied to an edge comprised of line segments. In contrast, application of the boundary condition to a 

point, which inherently has no area, requires specification of the surface perimeter. The surface 

perimeter, which is equal to the outside circumference of a pipe in ground freezing applications, is 

multiplied by the element thickness to obtain the surface area.  

Incropera et al. (2007) describes the difficulties in defining the convection coefficient a priori. In addition 

to depending on numerous fluid properties such as density, viscosity, thermal conductivity, and specific 

heat capacity, the convection coefficient depends on the surface geometry and flow conditions. The 

convection coefficient can be obtained by solving the boundary layer equations for simple flow 

situations. The more practical approach involves calculation of a Nusselt number, Nu, and subsequent 

calculation of a convection heat transfer coefficient from the functional relationship: 

Nu =
ℎ𝐿

𝑘𝑓
 

Equation 102 

where 𝑘𝑓 is the thermal conductivity of the fluid and 𝐿 is a characteristic length (e.g., hydraulic diameter 

= outer diameter – inner diameter). The Nusselt number can vary with time in response to the flow 

conditions (i.e., laminar or turbulent), temperature gradients, and other factors; consequently, the 

convection heat transfer coefficient is input as a function of time. The convection heat transfer 

coefficient for brine freezing applications typically ranges between 25 and 75 W/m2/°C.  

4.3.3.3 Inputs: Thermosyphon 

The inputs for the thermosyphon boundary condition are: 

• Air temperature as a function of time 

• Wind speed with time 

• Convective heat transfer coefficient versus wind speed 

• Surface perimeter (only if the boundary condition is applied to a point) 

• Maximum operating air temperature 

• Minimum temperature difference for vaporization  

 

A common application of a thermosyphon is to maintain frozen conditions beneath surface 

infrastructure, such as a roadway, constructed over permafrost. Thermosyphons transfer heat from the 
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ground if the air temperature moving past the condenser is less than ground temperature. 

Thermosyphons comprise an evaporator section installed in the ground and a condenser section 

exposed to atmospheric conditions.  

The overall heat conductance of a thermosyphon is defined as the heat rate extracted from the device 

divided by the temperature difference between the evaporator and air flowing past the condenser. 

Haynes and Zarling (1988), for example, measured overall heat conductance of a thermosyphon by 

placing the condenser in a wind tunnel maintained at constant temperature. The evaporator was also 

maintained at a constant temperature via a heated water bath. The overall heat conductance was 

measured at various wind speeds and the data described by empirical relationships of the form: 

𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 = 𝐴 + 𝐵(𝑢𝑛) Equation 103 

where 𝐴 and 𝐵 are coefficients, 𝑛 an exponent, and 𝑢 the fluid (wind) velocity. The convection heat 

transfer coefficient can be calculated by dividing the overall heat conductance by the total area of the 

evaporator, and input as a function of wind speed.  

Heat transfer through the thermosyphon ceases if: a) the air temperature is greater than the ground 

temperature; b) the air temperature exceeds a user specified maximum operating value; or, c) the 

temperature difference between the air and outside wall of the evaporator (i.e., ground) is not great 

enough to cause vaporization of the fluid (e.g., C02 or Anhydrous Ammonia). 

Thermosyphons are most commonly applied to circular openings (i.e., edges of elements) or to a point 

(i.e., node) in a 2D analysis. The evaporator of the thermosyphon is viewed in cross-section when the 

boundary condition is applied in this manner. Similar to the convective surface boundary condition, the 

surface area of the evaporator section is calculated via numerical integration when the boundary 

condition is applied to an edge comprising line segments. In contrast, application of the boundary 

condition to a point, which inherently has no area, requires specification of the surface perimeter. The 

surface perimeter, which is equal to the outside circumference of the evaporator, is multiplied by the 

element thickness to obtain the surface area of the evaporator. The thermosyphon boundary condition 

can also be applied to a line in an axisymmetric analysis to model a single vertical thermosyphon.  

4.3.4 Estimation Techniques 

4.3.4.1 Sinusoidal Distribution of Cumulative Daily Radiation 

Cumulative daily net radiation and cumulative daily shortwave radiation are the time-integrated values 

of the radiation flux (e.g., Figure 4). The cumulative daily radiation is often reported as an energy flux; 

however, it is more appropriate to consider this measurement as the total quantity of energy over a unit 

area of the ground surface in one day. The user has the option to apply the cumulative daily radiation 

flux directly, which is equivalent to assuming that the flux is constant over the day. There is also the 

option to distribute sinusoidally over each day. The radiation flux at any instant during the day is then 

estimated from the cumulative value as:   

(𝑞𝑛𝑠 − 𝑞𝑛𝑙) = 𝐴𝑠𝑖𝑛𝜃 Equation 104 
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where 

𝐴 = Normalized Amplitude = (𝜋 2𝑁⁄ ) 

𝜃 = Normalized time (0 < 𝜃 < 𝜋) 
Figure 5 presents the incoming solar radiation flux associated with a sinusoidal distribution of 

cumulative daily solar radiation. Sunrise and sunset are assumed to occur symmetrically around noon 

based on the maximum number of daylight hours for a given day (Equation 81). Net radiation is 

generally non-zero before and after sunrise and sunset, respectively, because the ground continues to 

emit net longwave radiation. However, the option to distribute a cumulative daily net radiation value 

assumes that the net radiation is zero before sunrise and after sunset.  

 

 

 Figure 5. Example of sinusoidal radiation flux. 

5 Air Transfer 
AIR/W (or AIR3D) is a finite element program for simulating air transfer. Although it can be a standalone 

product, the true power in the AIR/W formulation lies with the increased functionality it provides when 

combined with other GeoStudio products. For example, AIR/W can be coupled with TEMP/W to model 

forced convection heat transfer, with CTRAN/W to model gas transfer via advection, or with SEEP/W to 

model coupled air-water systems. Section 5.1 summarizes the air transfer and storage processes 

included in the formulation. Section 5.2 describes the constitutive models available to characterize the 

air transfer and storage processes of the medium. Section 5.3 describes the boundary conditions that 

are unique to this product beyond the basic FEM boundary conditions described in Section I.7. 

5.1 Theory 
The AIR/W formulation is based on the mass conservation statement (Equation 1 in Section 3.1). The 

rate of change in the mass of air stored in the REV is given by: 
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𝑀̇𝑔 = 𝑀̇𝑎 + 𝑀̇𝑑 + 𝑀̇𝑣 Equation 105 

 

The subscript 𝑔 has been used denote pore-gas, which comprises dry air (𝑎), dissolved dry air (𝑑), and 

water vapor (𝑣). The mass of dissolved air and water vapor are assumed negligible and are omitted from 

the AIR/W formulation. The rate of change in the mass of dry air within the control volume is calculated 

with the ideal gas law (see Equation 5): 

𝑀̇𝑎 =
𝜕𝑀𝑎

𝜕𝑡
=

𝑀

𝑅
[
𝜃𝑎

𝑇

𝜕𝑢𝑎

𝜕𝑡
+

𝑢̅𝑎

𝑇

𝜕𝜃𝑎

𝜕𝑡
+ 𝑢̅𝑎𝜃𝑎

𝜕

𝜕𝑡
(

1

𝑇
)] 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 106 

 

where 𝑀 is the molar mass, 𝑅 is the gas constant, 𝜃𝑎 is the volumetric air content, 𝑢𝑎 is pore air 

pressure, and 𝑢̅𝑎 absolute air pressure. The temporal derivative of the volumetric air content is equal to 

the negative of the temporal derivative of the volumetric water content: 

𝜕𝜃𝑎

𝜕𝑡
= −

𝜕𝜃𝑤

𝜕𝑡
= − (𝑚𝑤

𝜕𝑢𝑎

𝜕𝑡
− 𝑚𝑤

𝜕𝑢𝑤

𝜕𝑡
) 

Equation 107 

 

where 𝑚𝑤 is the slope of the volumetric water content function.  

The air mass flow rate in response to mechanical energy gradients follows a similar form as Darcy’s Law 

for variable density liquid water flow: 

𝑚̇𝑎 = 𝜌𝑎𝑞𝑎𝑑𝑥𝑑𝑧 =
−𝑘𝑎

𝑔
(

𝜕𝑢𝑎

𝜕𝑦
+ 𝜌𝑎𝑔

𝜕𝑦

𝜕𝑦
) 𝑑𝑥𝑑𝑧 

Equation 108 

 

where 𝑞𝑎 is the volumetric air flux and 𝑘𝑎 is the (dry) air hydraulic conductivity. Substitution and 

expansion of Equation 106 and Equation 108 into the conservation statement and division by the 

volume of the REV gives:  

𝜌
𝑎

[(
𝜃𝑎

𝑢̅𝑎

− 𝑚𝑤)
𝜕𝑢𝑎

𝜕𝑡
+ 𝑚𝑤

𝜕𝑢𝑤

𝜕𝑡
+ 𝑇𝜃𝑎

𝜕

𝜕𝑡
(

1

𝑇
)] =

𝜕

𝜕𝑦
[
𝑘𝑎

𝑔
(

𝜕𝑢𝑎

𝜕𝑦
+ 𝜌

𝑎
𝑔

𝜕𝑦

𝜕𝑦
)] 

Equation 109 

 

Equation 109 can be simplified by assuming isothermal conditions with constant water content (i.e., 

single-phase air transfer): 

𝜌
𝑎

𝜃𝑎

𝑢̅𝑎

=
𝜕

𝜕𝑦
[
𝑘𝑎

𝑔
(

𝜕𝑢𝑎

𝜕𝑦
+ 𝜌

𝑎
𝑔

𝜕𝑦

𝜕𝑦
)] 

Equation 110 

 

Table 14 summarizes the physical processes included in the partial differential equation solved by 

AIR/W. The left side of Equation 109 includes the rate of change in the mass of air due to changes in air 

density and air content. The formulation implicitly includes the effect of changes in pore-air pressure 
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and temperature on storage via the ideal gas law. Changes in air content are linked to changes in water 

content and, therefore, pore-water pressure. The right side of Equation 109 includes air transfer in 

response to gradients in pore-air pressure and density.  

 

Table 14. Summary of the physical processes included in the AIR/W formulation.  

Physical Process GeoStudio Products 

Storage: air compressibility AIR/W 

Storage: soil structure compressibility AIR/W + SEEP/W 

Storage: matric suction changes due to pore-water pressure changes AIR/W + SEEP/W 

Storage: matric suction changes due to pore-air pressure changes AIR/W + SEEP/W 

Storage: air density changes due to temperature changes AIR/W + TEMP/W 

Flow: pressure-driven (isothermal) AIR/W 

Flow: gravity-driven  AIR/W 

Flow: density-driven via thermal effects (free convection) AIR/W + TEMP/W  

 

The key elements of the AIR/W formulation are as follows: 

• The default physical processes in AIR/W include pressure and gravity-driven flow and storage 

changes due to changes in air pressure. 

• Thermal effects on air density, which exerts control on both storage and flow, are included by 

coupling AIR/W and TEMP/W. This is achieved by selecting the option for free convection: 

thermal effects. 

• AIR/W can be coupled with SEEP/W to simultaneously model water transfer and its effect on air 

transfer and storage (and vice versa). This is achieved by solving air and water transfer on the 

same domain. Thermal effects can also be included with this type of analysis (AIR/W + SEEP/W + 

TEMP/W). 

5.2 Material Models 

5.2.1 Single Phase 

Single phase pore-air transfer through porous media can be modelled assuming that the volumetric air 

content (and water content) are constant. This material model can be applied to AIR/W and coupled 

AIR/W-TEMP/W analyses, but not for coupled AIR/W-SEEP/W analyses. The parameters required for this 

material model are presented in Table 15. Air conductivity is assumed to be isotropic for this material 

model. Changes in air storage are a function of the air content and air density, with the latter calculated 

internally according to the ideal gas law. 

 Table 15. Parameters for the single-phase material model. 
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Parameter Symbol Unit 

Air Conductivity  𝑘𝑎 m/s 

Volumetric Air Content 𝜃𝑎 m2/kN 

 

5.2.2 Dual Phase 

The dual-phase material model is required for coupled AIR/W-SEEP/W analyses. The parameters 

required for this material model are presented in Table 16. Air conductivity governs the resistance to 

flow and is entered as a function of saturation. The air content is no longer an input because it is 

determined directly from the volumetric water content function used in the SEEP/W water transfer 

analysis. As in the single-phase material model, air density is calculated according to the ideal gas law 

given the air pressure and temperature. 

 Table 16. Parameters for the single-phase material model. 

Parameter Symbol Unit 

Air Conductivity Function 𝑘𝑎(𝑆) m/s 

 

5.2.3 Estimation Techniques 

5.2.3.1 Air Conductivity Function 

GeoStudio uses the closed-form equation presented by Ba-Te et al. (2005) to estimate the air 

conductivity function. The equation is given as: 

𝑘𝑎 = 𝑘𝑑𝑟𝑦(1 − 𝑆)
1

2⁄ (1 − 𝑆
1

𝑞⁄ )
2𝑞

 
Equation 111 

where 𝑘𝑑𝑟𝑦 is the air conductivity of the dry soil, 𝑆 is the saturation of the soil, and 𝑞 is a curve fitting 

parameter related to pore-size distribution (assumed to be 2.9 after Fredlund et al., 2012). 

5.3 Boundary Conditions 
The conventional first and second type boundary conditions as described in Section 0 can be used within 

an air flow analysis. However, simulating the effect of atmospheric air pressure on the ground surface 

requires a unique boundary condition.  

5.3.1 Barometric Air Pressure 

The barometric air pressure boundary condition is used to simulate the variability in atmospheric air 

pressure along a sloping ground surface. The air pressure, 𝑢𝑎𝑦
, at an arbitrary elevation, 𝑦, is calculated 

according to the barometric formula: 
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𝑢𝑎𝑦
= 𝑢̅𝑎0

𝑒
(

−𝑀𝑔
𝑅𝑇𝑎

(𝑦−𝑦0))
− 𝑢̅𝑎𝑁𝐼𝑆𝑇

 

Equation 112 

 

where 𝑢̅𝑎0
 is the atmospheric air pressure measured at the elevation 𝑦0 and air temperature 𝑇𝑎, and 

𝑢̅𝑎𝑁𝐼𝑆𝑇
 the standard atmospheric pressure at sea level (i.e. 101.325 kPa). Absolute pressure is zero-

referenced against a perfect vacuum while gauge pressure is zero-referenced against the ambient air 

pressure. Absolute pressure is therefore equal to atmospheric pressure plus gauge pressure. Exposure of 

an absolute pressure measurement device to the atmosphere allows for measurement of barometric air 

pressure, which naturally corresponds to a gauge pressure of zero. The air pressure 𝑢𝑎𝑦
 in Equation 112 

must therefore be thought of as a differential pressure; that is, the air pressure measured by a device 

that is zero referenced against standard atmospheric pressure at sea level.  
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6 Solute and Gas Transfer 
CTRAN/W (or CTRAN3D) is a finite element program for simulating the transport of a dissolved 

constituent or gas through porous media. Typical applications for CTRAN/W include dissolved solute or 

gas transport through regional or local groundwater flow systems, or oxygen transport through air and 

water within unsaturated mine waste. Section 6.1 summarizes the solute and gas transfer and storage 

processes included in the CTRAN/W formulation. Section 6.2 describes the constitutive models available 

to characterize the solute and gas transfer and storage processes, and Section 6.3 describes the 

boundary conditions unique to this product.  

6.1 Theory 
The governing equations for solute and gas transfer in CTRAN/W are based on the law of mass 

conservation in the same manner as the water (Section 3.1) and air (Section 5.1) transfer formulations.  

6.1.1 Solute Transfer 

The rate of change in the mass of solute stored in a control volume is given by: 

𝑀̇𝑠𝑡 = 𝑀̇𝑑𝑝 + 𝑀̇𝑎𝑝 Equation 113 

The subscript 𝑑𝑝 and 𝑎𝑝 have been used to denote dissolved and adsorbed phases. This equation can be 
expanded to: 

𝑀̇𝑠𝑡 =
𝜕

𝜕𝑡
(𝐶𝜃𝑤 + 𝜌𝑑𝑆∗)𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 114 

where 𝐶 is the mass concentration in the dissolved phase, 𝜌𝑑 is the dry bulk density of the soil (𝑀𝑠 𝑉𝑡⁄ ), 

and 𝑆∗ is the quantity of mass (𝑀) sorbed per mass of solids (𝑀𝑠).  

First order kinematic reactions such as radioactive decay, biodegradation, and hydrolysis result in mass 

consumption within the control volume. Thus, a sink term is now included in the conservation statement 

(𝑀̇𝑆) to represent the first order reaction processes. The rate of change in the solute mass due to decay, 

𝑀̇𝜆, is given by:  

𝑀̇𝜆 = −𝜆(𝜃𝑤𝐶 + 𝜌𝑑𝑆∗
) 𝑑𝑥 𝑑𝑦 𝑑𝑧 = −𝑀̇𝑆 Equation 115 

where 𝜆 is the reaction constant.  

The mass flow rate in response to concentration gradients, 𝑚̇𝐷, can be evaluated according to Fick’s 

Law: 

𝒎̇𝑫 = 𝑱𝑫𝒅𝒙𝒅𝒛 = −𝑫𝒅
∗ 𝜽𝒘

𝝏𝑪

𝝏𝒚
𝒅𝒙𝒅𝒛 

Equation 116 
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where 𝐽𝐷 is the diffusion mass flux and 𝐷𝑑
∗  is the bulk diffusion coefficient, which accounts for the effects 

of tortuosity. The bulk diffusion coefficient can be replaced by a coefficient of hydrodynamic dispersion 

that incorporates the combined effects of diffusion and mechanical dispersion: 

𝐷 = 𝐷′ + 𝐷𝑑
∗  Equation 117 

where 𝐷′ is the coefficient of mechanical dispersion, which can be expanded to give: 

𝐷 = 𝛼𝑣𝑤 + 𝐷𝑑
∗  Equation 118 

where 𝛼 is the dispersivity of the medium and 𝑣𝑤 is the groundwater velocity. It is important to note 

that mechanical dispersion is represented as a tensor rather than a scalar in multi-dimensional problems 

while the bulk diffusion coefficient is represented as a scalar.   

Advection solute transport is mass transport due to the flow of water in which the mass is dissolved. The 

direction and rate of transport coincide with the groundwater flow. The groundwater flux is described 

by the Darcy Equation. The advective mass flow rate, 𝑚̇𝐴, is given by: 

𝑚̇𝐴 = 𝐽𝐴𝑑𝑥𝑑𝑧 = (𝜃𝑤𝐶)𝑣𝑤𝑑𝑥𝑑𝑧 = 𝐶𝑞𝑤𝑑𝑥𝑑𝑧 Equation 119 

where 𝐽𝐴 is the advective mass flux, (𝜃𝑤𝐶) is the amount of dissolved mass relative to the control 

volume, and 𝑞𝑤 is the water flux, which is related to the linear groundwater velocity by 𝑞𝑤/𝜃𝑤.  

Substitution and expansion of the foregoing rate equations into the conservation statement and division 

by the dimensions of the control volume gives: 

(𝜃𝑤 + 𝜌𝑑

𝜕𝑆∗

𝜕𝐶
)

𝜕𝐶

𝜕𝑡
+ 𝐶

𝜕𝜃𝑤

𝜕𝑡
=

𝜕

𝜕𝑦
[𝐷𝜃𝑤

𝜕𝐶

𝜕𝑦
− 𝐶𝑞𝑤] − 𝜆(𝜃𝑤𝐶 + 𝜌𝑑𝑆)   

Equation 120 

where 𝜕𝑆∗/𝜕𝐶 is the equilibrium sorption isotherm or the adsorption coefficient (𝐾𝑑). 

Table 17 summarizes the physical processes included in the partial differential equation solved by 

CTRAN/W for solute transfer. The left side of Equation 120 includes rates of mass change in response to 

concentration changes, adsorption, and water content changes. The right side of Equation 120 includes 

solute transfer via diffusion and advection-dispersion, along with the first order reaction losses from the 

dissolved and adsorbed mass.  

Table 17. Summary of the physical processes included in the CTRAN/W solute transfer formulation.  

Physical Process GeoStudio Products 

Storage: concentration changes CTRAN/W + SEEP/W 

Storage: water content changes CTRAN/W + SEEP/W 

Storage: adsorption CTRAN/W + SEEP/W 

Storage: decay of dissolved and adsorbed mass CTRAN/W + SEEP/W 

Flow: diffusion  CTRAN/W + SEEP/W 
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Flow: advection-dispersion with water transfer CTRAN/W + SEEP/W 

The key elements of the CTRAN/W solute transfer formulation are as follows: 

• The default simulated physical processes include storage changes due to variation in 

concentration, adsorption, decay, and diffusive transport. Advection-dispersion is an optional 

physical process. 

• A SEEP/W analysis must always be defined for a solute transfer analysis because of the water 

content term in Equation 120. 

• Changes in storage due to changes in water content due to vaporization or condensation are 

only considered if the coupled SEEP/W analysis includes the physical process of isothermal 

and/or thermal vapor flow. 

6.1.2 Gas Transfer 

The gas transfer equation is derived in the same manner as the solute transfer equation (Section 6.1.1). 

CTRAN/W considers gas movement in the gas phase and the aqueous phase. The gas transport equation 

is given as:   

𝜃𝑒𝑞

𝜕𝐶𝑔𝑝

𝜕𝑡
=

𝜕

𝜕𝑦
[(𝐷𝑎𝜃𝑎 + 𝐷𝑤𝐻𝜃𝑤)

𝜕𝐶𝑔𝑝

𝜕𝑦
] − 𝑞𝑎

𝜕𝐶𝑔𝑝

𝜕𝑦
− 𝐻𝑞𝑤

𝜕𝐶𝑔𝑝

𝜕𝑦
− 𝐾𝑟

∗𝜃𝑒𝑞𝐶𝑔𝑝  − 𝜆𝜃𝑒𝑞𝐶𝑔𝑝    
Equation 121 

where 𝐶𝑔𝑝 is concentration in the gas phase, 𝐷𝑎 and 𝐷𝑤 are the coefficients of hydrodynamic dispersion 

for gas transport in the gas and aqueous phases, respectively, and 𝐻 is the dimensionless form of 

Henry’s equilibrium constant (i.e., 𝐶𝑑𝑝/𝐶𝑔𝑝 where 𝐶𝑑𝑝 is the gas concentration in the dissolved or 

aqueous phase). The air and water fluxes are 𝑞𝑎 and 𝑞𝑤, respectively, 𝐾𝑟
∗ is the bulk reaction rate 

coefficient for irreversible first order reaction processes such as oxidation, and 𝜆 is the decay constant 

for radioactive decay or some reaction rate coefficient for biodegradation or hydrolysis.  

The equivalent diffusion porosity, 𝜃𝑒𝑞, was defined by Aubertin et al. (2000) as: 

𝜃𝑒𝑞 = 𝜃𝑎 + 𝐻𝜃𝑤   Equation 122 

The coefficients of hydrodynamic dispersion comprise both the coefficient of mechanical dispersion 

(𝐷′ = 𝛼𝑣) and bulk diffusion coefficient (𝐷𝑑
∗) for each phase such that: 

𝐷𝑤 = 𝛼𝑤𝑣𝑤 + 𝐷𝑑𝑤
∗  Equation 123 

and 

𝐷𝑎 = 𝛼𝑎𝑣𝑎 + 𝐷𝑑𝑎
∗  Equation 124 

Table 18 summarizes the physical processes included in the partial differential equation solved by 

CTRAN/W for gas transfer. The left side of Equation 121 includes rates of mass change in response to 

concentration changes. The right side includes gas transfer via diffusion in the gas and dissolved phases 
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and advection-dispersion in the gas and dissolved phases. The formulation also includes the decay of 

mass within the gaseous and aqueous phases, as well as first order reaction processes (i.e., 

consumption).   

Table 18. Summary of the physical processes included in the CTRAN/W gas transfer formulation.  

Physical Process GeoStudio Products 

Storage: concentration changes CTRAN/W + SEEP/W 

Storage: decay of gas in free and dissolved phases CTRAN/W + SEEP/W 

Storage: consumption in the free and dissolved phases CTRAN/W + SEEP/W 

Flow: diffusion in the free and dissolved phases CTRAN/W + SEEP/W 

Flow: advection-dispersion with water transfer  CTRAN/W + SEEP/W 

Flow: advection-dispersion with air transfer CTRAN/W + SEEP/W + AIR/W 

 

The key elements of the CTRAN/W gas transfer formulation are as follows: 

• The default simulated physical processes include concentration changes via decay or reaction 

processes, and diffusive transport. Advection-dispersion with water and/or air transfer is an 

optional physical process. 

• A SEEP/W analysis must always be defined for a gas transfer analysis because of the equivalent 

diffusion porosity term in Equation 121. 

• The concentration in the gas and dissolved phases is assumed to be in equilibrium. 

6.2 Material Models 

6.2.1 Solute Transfer 

There is only one material model available in a CTRAN/W analysis. The parameters required for this 

material model are presented in Table 19. The bulk diffusion coefficient is defined as a function of water 

content and the adsorption is defined as a function of concentration. The first order reaction coefficient 

is calculated internally from the specified reaction half-life (Equation 120). The longitudinal and 

transverse dispersivity inputs are only visible if advection-dispersion is included in the analysis.  

Table 19. Parameters for a solute transfer material model. 

Parameter Symbol Unit 

Bulk Diffusion Coefficient function 𝐷(𝜃𝑤) m2/s 

Adsorption function 𝐾𝑑(𝐶) Mg/Mg 

Decay Half-Life 𝑡1
2⁄  s 

Dry Density 𝜌𝑑 Mg/m3 

Longitudinal Dispersivity 𝛼𝐿 m 
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Transverse Dispersivity 𝛼𝑇  m 

6.2.2 Gas Transfer 

There is only one material model available for a CTRAN/W gas transfer analysis. The parameters 

required for this material model are presented in Table 20. The bulk diffusion coefficients for the gas 

and water phases are defined as a function of water content. The bulk reaction rate coefficient is also 

defined as a function of water content. As for a solute transfer analysis, the decay half-life is used 

internally to calculate the decay constant in Equation 121. The longitudinal and transverse dispersivity 

inputs are only visible when advection-dispersion is included in the analysis.  

Table 20. Parameters for a gas transfer material model. 

Parameter Symbol Unit 

Bulk Diffusion Coefficient function in Gas Phase 𝐷𝑑𝑎
∗ (𝜃𝑤) m2/s 

Bulk Diffusion Coefficient function in Water Phase 𝐷𝑑𝑤
∗ (𝜃𝑤) m2/s 

Bulk Reaction Rate Coefficient function 𝐾𝑟
∗(𝜃𝑤) 1/s 

Solubility Coefficient1 𝑆  

Decay Half-Life 𝑡1
2⁄  s 

Longitudinal Dispersivity in Air Phase 𝛼𝐿𝑎 m 

Transverse Dispersivity in Air Phase 𝛼𝑇𝑎 m 

Longitudinal Dispersivity in Water Phase 𝛼𝐿𝑤 m 

Transverse Dispersivity in Water Phase 𝛼𝑇𝑤 m 

1Henry’s law constant expressed as the dimensionless ratio between the aqueous-phase concentration of a species 

and its gas-phase concentration 

6.3 Boundary Conditions 
The 1st type boundary condition in a solute and gas transfer analysis is specification of the primary 

variable; that is, concentration. Specification of the gradient in concentration normal to the boundary is 

a 2nd type boundary condition and specification of the mass flux, or mass rate, at the boundary is the 

3rd type boundary condition.  

The default boundary condition in CTRAN/W – that is, the boundary condition that is implicit if 

unspecified – is a second type boundary condition with a zero concentration gradient normal to the 

boundary. In other words, the default boundary condition is zero dispersive mass flux. Even under this 

condition, solute or gas can still leave or enter the domain by advection with flowing water or air. A 

mass flux (q) or mass rate (Q) boundary condition with a value of 0.0 must therefore be applied to 

achieve a total mass flux of zero. Incidentally, the same behaviour exists in a TEMP/W analysis involving 

heat advection with flowing water or air; that is, heat can leave or enter the domain with flowing fluid at 

the default 2nd type boundary. There are two additional CTRAN/W boundary conditions for both solute 
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and gas transfer analyses that require further consideration: (1) source concentration; and (2) free exit 

mass flux.  

6.3.1 Source Concentration 

The source concentration is a special form of the 3rd type boundary in which the mass flux entering the 

domain is calculated as the fluid flux multiplied by the input source concentration.  

𝐽𝑠 = 𝐶𝑞𝑛 Equation 125 

 

This boundary condition is useful because the concentration of the pore-fluid at the edge of the 

boundary is not necessarily equal to the source concentration at the onset of an analysis due to mass 

flux produced by concentration gradients. It is like a mass flux (q) or mass rate (Q) boundary in that the 

boundary condition controls the mass flux into the domain; however, in this case the user is specifying 

the concentration of the fluid ‘external’ to the domain and allowing the software to calculate mass flux 

with the fluid flowing across the domain boundary. 

6.3.2 Free Exit Mass Flux 

The free exit boundary condition allows mass to exit by advection and in accordance with the solute 

concentration arriving at the boundary: 

𝐽𝑠 = 𝐶𝑞𝑛 Equation 126 

 

where the fluid (air or water) flux, 𝑞𝑛, is calculated normal to the surface. The free exit mass flux 

boundary condition does not require any inputs because the concentration at the boundary is computed 

by the solver. The free exit boundary reverts to a zero total mass flux boundary condition if fluid is 

entering the domain, which causes a flushing effect given that the fluid is implicitly at zero 

concentration.  

6.4 Convergence 
Appendix I.8 provides an overview on the convergence settings and under-relaxation controls to obtain 

a converged solution. The finite element solution of the advection-dispersion equations can produce 

numerical dispersion and oscillation that cannot be detected by the convergence criteria. These 

numerical problems must be detected by some other means, specifically the use of dimensionless 

numbers.  

6.4.1 Dimensionless Numbers 

The Péclet and Courant dimensionless numbers can be used to minimize the numerical dispersion and 

oscillation that is inherent in the finite element solution of the advection-dispersion equation. The 

Péclet number is defined as the ratio of the rate of advection to the rate of diffusion, and thus provides 

a measure of the degree to which advection dominates the contaminant transport process. The Courant 

number, on the other hand, reflects the portion of an element that is traversed by a solute in one time 

step. In one dimensional form, these numbers read as follows 
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Pe ≡ ReSc       

=
𝑣∆𝑥

𝜂 𝜌⁄

𝜂 𝜌⁄

𝐷

=
𝑣∆𝑥

𝐷
         

 

Equation 127 

 

 C =
𝑣∆𝑡

∆𝑥
         

where Re and Sc are the Reynolds and Schmidt dimensionless numbers, respectively; 𝑣 is the fluid 

velocity; ∆𝑥 is the nodal spacing; 𝜂 is the dynamic viscosity of the fluid; 𝜌 is the mass density of the fluid; 

𝐷 is the coefficient of hydrodynamic dispersion; ∆𝑡 is the time increment. Ensuring that the Péclet 

number remains smaller than two (2) and the Courant number smaller than one (1) decreases 

oscillations, improves accuracy and decreases numerical dispersion when advection dominates 

dispersion. In other words, the spatial discretization of the flow regime should not be larger than twice 

the dispersion potential of the porous media and the distance traveled by advection during one time 

step.   
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Appendix I  Formulation Fundamentals 
There have been many thorough textbooks written on the subject of the finite element method (e.g. 

Bathe, 2006; Zienkiewicz and Taylor, 1989). The method is mathematically elegant and generalized; 

however, the details of the derivations and implementation strategies can be overwhelming. As such, 

the objective of this appendix is to provide a basic overview of the method with the goal being to 

provide a framework for discussing other topics such as discretization, the need for a constitutive 

model, and boundary conditions.  

An analytical or closed-form solution of a physical problem always involves a few common steps. First, a 

set of mathematical equations must be derived to describe the physical process under consideration; 

commonly this takes the form of a partial differential equation (PDE) expressed in terms of some 

dependent variable. Next, the temporal and spatial limits of the problem (the domain over which the 

solution is sought) is defined and the appropriate boundary conditions which constrain the solution are 

defined. All parameters within the PDE must then be defined, including material properties used to 

characterize a particular material behavior. The solution of the PDE over the domain, given the specified 

material properties and subject to the selected boundary conditions, is the value of the dependent 

variable as a function of position and time (in the case of a transient problem).  

A similar solution pattern is applied in the case of the FEM. A conceptual model of a physical system is 

developed, the relevant physics (PDE) are selected, and the domain for the solution is defined. Just as in 

the analytical solution, the material properties across the domain must be specified and boundary 

conditions must be applied to constrain the solution. The FEM is selected as a solution method, rather 

than an analytical solution, likely due to complexities in geometry or material behavior. In order to 

overcome these complexities, the FEM, essentially, ‘solves’ the governing equation over smaller ‘finite 

elements’ which have well defined geometry and have a pre-selected shape to the distribution of the 

dependent variable across the element. The PDE across an individual element is then described in terms 

of the values of the dependent variable at the element nodes (fixed positions within the domain). 

Solving for the common set of nodal values for all elements at the same time then results in the solution 

of the dependent variable across the domain (i.e. in space and time).  

As a consequence, the finite element method involves the following general steps:  

1. Discretization of the domain into finite elements; 

2. Selection of a function to describe how the primary variable varies within an element; 

3. Definition of a constitutive relationship; 

4. Derivation of element equations; 

5. Assembly of the global equations and modification for boundary conditions; and, 

6. Solution of the global equations. 

The solution of the global equations, which is a solution to a partial differential equation, provides a 

spatial and temporal description of the primary variable (e.g. temperature or displacement) within the 

domain.   
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I.1 Governing Equation 

The governing partial differential equations for heat and mass transfer formulations are derived from 

the requirement for energy or mass conservation. The following sections provide generalized 

descriptions of the conservation requirements.   

I.1.1 Conservation of Mass Requirement 

The governing equations for the water (Section 3), air (Section 5), solute (Section 6), and gas (Section 6) 

transfer formulations are derived from the requirement for mass conservation. The law of mass 

conservation states that the total mass of a system is conserved and that the mass in a system can only 

change if mass crosses its boundaries. The principle of mass conservation states that the increase in the 

mass stored in a control volume must equal the mass that enters the control volume, minus the mass 

that leaves the control volume, plus the mass that is added (source or sink) to the control volume 

(Incropera et al., 2007).  

The principle of mass conservation must also be satisfied at every instant of time, which means that 

there must be a balance between all mass rates (i.e. mass per time). This can be stated as follows: the 

rate of increase in the mass stored in a control volume must equal the mass rate entering the control 

volume, minus the mass rate leaving the control volume, plus the mass rate at which mass is added to 

the control volume.  

The generic mass conservation statement in equation form is provided in Section 3.1 (Equation 1); 

however, this statement can be specialized by appending ‘of water’, ‘of air’, ‘of dissolved solute’, or of 

‘gas’ for the corresponding transfer formulation. The inflow and outflow terms in Equation 1 (𝑚𝑖𝑛 and 

𝑚𝑜𝑢𝑡) can be separated into the mass transfer rates perpendicular to the control volume surfaces in the 

x, y, and z directions (𝑚̇𝑥, 𝑚̇𝑦, and 𝑚̇𝑧). The mass rates at the opposite surfaces can then be expressed 

as a Taylor series expansion. Neglecting higher order terms and considering only one-dimensional flow 

in the y-coordinate direction, the mass rate at the opposite surface is given by: 

𝑚̇𝑦+𝑑𝑦 = 𝑚̇𝑦 +
𝜕𝑚̇𝑦

𝜕𝑦
𝑑𝑦 

Equation 128 

Expressing the principle of mass conservation (Equation 1) with the foregoing rate equations and 

assuming that no mass is added to (or removed from) the control mass, gives: 

𝑀̇𝑠𝑡 = 𝑚̇𝑦 − 𝑚̇𝑦+𝑑𝑦 Equation 129 

Substitution of Equation 128 into Equation 129 gives: 

𝑀̇𝑠𝑡 = −
𝜕𝑚̇𝑦

𝜕𝑦
𝑑𝑦 

Equation 130 
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Equation 130 is generalized for the transient condition, which implies a temporal change in the stored 

mass. Changes in stored mass are the result of a time-dependency of the primary variable. A well-known 

example of this in geotechnical engineering would be consolidation – the time-dependent dissipation of 

excess pore-water pressure and concomitant time-dependent compression of a soil profile. Analogous 

processes include redistribution of solute or gas within a porous media and air/water pressure changes 

due to barometric pressure changes. A steady-state condition develops when the mass or energy stored 

within a system is constant. This can only occur if the primary variable at each point in space is 

independent of time. The steady-state rate-based mass conservation statement can be written as:   

0 = −
𝜕𝑚̇𝑦

𝜕𝑦
𝑑𝑦 

Equation 131 

I.1.2 Conservation of Energy Requirement 

A similar conservation equation and approach can be applied to energy transport. There are various 

forms of energy transport (e.g. thermal, electrical, chemical); however, TEMP/W considers only thermal 

energy, comprised of sensible and latent components. The energy in a system changes according to the 

first law of thermodynamics, which states that the increase in the amount of thermal energy stored in a 

control volume must equal the amount of thermal energy that enters the control volume, minus the 

amount of thermal energy that leaves the control volume, plus the amount of thermal energy that is 

generated within the control volume (Incropera et al., 2007).  

Energy is quantified in the SI system in terms of joules. The first law must also be satisfied at every 

instant of time, which means that there must be a balance between all energy rates, as measured in 

joules per second (Watts, W). In words, this is expressed as: The rate of increase in the amount of 

thermal energy stored in a control volume must equal the rate at which thermal energy enters the 

control volume, minus the rate at which thermal energy leaves the control volume, plus the rate at 

which thermal energy is generated within the control volume (Incropera et al., 2007).  

The equation associated with the rate-based energy conservation statement is provided in Section 4.1 

(Equation 50). The inflow and outflow terms in Equation 50 (𝐸̇𝑖𝑛 and 𝐸̇𝑜𝑢𝑡) represent heat transfer 

processes across the control surfaces. These energy rates are perpendicular to each of the surfaces in 

the x, y, and z directions (𝑄̇𝑥, 𝑄̇𝑦, and 𝑄̇𝑧). The conduction heat rates at the opposite surfaces can then 

be expressed as a Taylor series expansion. Neglecting higher order terms and considering only one-

dimensional flow in the y-coordinate direction, the heat rate at the opposite surface is given by: 

𝑄̇𝑦+𝑑𝑦 = 𝑄̇𝑦 +
𝜕𝑄̇𝑦

𝜕𝑦
𝑑𝑦 

Equation 132 

The rate at which thermal energy enters the control volume by energy advection – also termed forced 

convection – is calculated as 𝑚̇𝑦𝑢𝑡(𝑦), where 𝑢𝑡 is the thermal energy per unit mass and 𝑚̇𝑦 is the mass 
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flow rate. The rate at which thermal energy exits the control volume at the opposite surfaces can be 

expressed as a Taylor series expansion:  

𝑚̇𝑦+𝑑𝑦𝑢𝑡(𝑦+𝑑𝑦) = 𝑚̇𝑦𝑢𝑡(𝑦) +
𝜕(𝑚̇𝑦𝑢𝑡(𝑦))

𝜕𝑦
𝑑𝑦 

Equation 133 

where the higher order terms are neglected. 

Expressing the conservation of energy (Equation 50) with the foregoing rate equations, assuming no 

energy generation within the control volume, gives:  

𝐸̇𝑠𝑡 = 𝑄̇𝑦 + 𝑚̇𝑦𝑢𝑡(𝑦) − 𝑄̇𝑦+𝑑𝑦 − 𝑚̇𝑦+𝑑𝑦𝑢𝑡(𝑦+𝑑𝑦) Equation 134 

Substitution of Equation 132 and Equation 133 into Equation 134 gives: 

𝐸̇𝑠𝑡 = −
𝜕𝑄̇𝑦

𝜕𝑦
𝑑𝑦 −

𝜕(𝑚̇𝑦𝑢𝑡(𝑦))

𝜕𝑦
𝑑𝑦 

Equation 135 

A transient response of a physical system is indicated by temporal changes in energy. Therefore, 

temperature is time-dependent. The propagation of a freezing front is an example of a well-known 

transient phenomenon. A steady-state condition develops when the energy within a system is constant. 

This can only occur if the temperature at each point in space is independent of time. The steady-state 

rate based energy conservation statement can be written as:   

𝐸̇𝑠𝑡 = 0 = −
𝜕𝑄̇𝑦

𝜕𝑦
𝑑𝑦 −

𝜕(𝑚̇𝑦𝑢𝑡(𝑦))

𝜕𝑦
𝑑𝑦 

Equation 136 

I.2 Domain Discretization 

The essence of the finite element method is embodied by discretization. Discretization is the process of 

subdividing a complex system into a number of finite elements. Figure 6 shows an 8-node quadrilateral 

and 6-node triangular element. Subdivision of the system into finite elements makes it possible to solve 

the governing equation by writing equations for each individual finite element. The term discretization 

implies approximation because the finite element method solves for the independent variable at 

discrete points (the element nodes) within the domain. This produces a piece-wise approximation of a 

variable, which in reality is continuously distributed (e.g., concentration or air pressure).  

 

Figure 6. Examples of finite elements. 
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I.3 Primary Variable Approximation 

The primary variable is calculated only at the element nodes. Thus, a shape or interpolation function is 

required to generate a continuously distributed approximation of the primary variable. The interpolation 

function describes the spatial variation of the primary variable within the element and is used to 

estimate its value between the known data points (i.e., the nodes). Interpolation of a primary variable is 

given by: 

𝑢 =  ∑ ℎ𝑖𝑢𝑖

𝑞

𝑖=1

 

Equation 137 

where 𝑢 is the is the primary value anywhere within the element, 𝑢𝑖 is the value at nodal points, and ℎ𝑖 

is the interpolating function for that particular node. A function of this form is written for all primary 

variables, if there are more than 1 (e.g., displacement in the direction of the three primary coordinates). 

The mathematical descriptions of the interpolating functions are irrelevant to this discussion. The key 

concept is that the primary variable anywhere within the element is described based on nodal values. 

I.4 Element Equations  

The solution of a partial differential equation by the finite element method ultimately produces an 

equation for each element. Bathe (2006) provides an insightful and generalized derivation of the finite 

element equation for a steady-state problem, which can be written using matrix notation as:  

𝑲(𝒎)𝑼(𝒎) = 𝑹(𝒎) Equation 138 

where 𝑲(𝒎) is the element characteristic matrix, 𝑼(𝒎) is the matrix of nodal unknowns, 𝑹(𝒎) is the 

nodal load vector for the element, which is sometimes called the forcing vector or the resultant vector. 

The matrix notation represents a set of simultaneous algebraic equations that can be solved using a 

number of techniques. The element characteristic matrix comprises a number of terms, including the 

constitutive matrix, 𝑪(𝒎), that is populated with the material properties. The finite element equation for 

a transient heat or mass transfer problem takes the form:  

𝑲(𝒎)𝑼(𝒎) − 𝑴(𝒎)𝑼̇(𝒎) = 𝑹(𝒎) Equation 139 

The over dot indicates a time derivative of the primary variable and 𝑴(𝒎) is the element mass matrix. 

The mass matrix embodies the material property related to storage. The time derivative of the primary 

variable is the difference between the value at the current time step and the previous time step, divided 

by the time increment. As a result of the time derivative, a transient analysis requires: a) time-step 

definition; and, b) initial conditions.  

Although not revealed by this basic discourse, and regardless of the complexity of the final form of the 

equation, the element equation is in fact a perfect reflection of the conservation statement on which it 

was derived. In other words, it is possible to inspect the mathematical operations and recover the 
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conservation statement. Desai (1979) provides a more elementary derivation that lends clarity to the 

idea that the element equation is a perfect reflection of the conservation statement.  

I.5 Global Equations 

One of the most elegant aspects of the finite element method lies in Step 5: assembly of the global finite 

element equation. The element equations (Equation 139) are generated recursively for every element in 

the domain and then added to the global finite element equation:  

𝑲𝑼 = 𝑹 Equation 140 

where 𝑲 is the global characteristic matrix, 𝑼 is the global assemblage of nodal unknowns, and 𝑹 is the 

global load vector.  

The assembly process is based on the law of compatibility or continuity. The assembly process can also 

be considered the final step required to obey the governing partial differential equation, which applies 

to the entire domain (i.e., not just one element). The global finite element equation satisfies the 

governing partial differential equation because it is the result of assembling the individual equations for 

a single element that were formulated to satisfy the governing PDE. The assembly procedure is 

analogous to the method of sections used to analyze the static equilibrium of a truss. Equilibrium of the 

entire system is ensured by satisfying static equilibrium for each member of the structure.  

Assembly of the finite element equations requires material property and element geometry definitions. 

Conveniently, the discretization process produces a collection of elements and nodes with defined 

geometry, namely the Cartesian coordinates of all the nodes.  

It is important to note that the global finite element equation shown above is essentially a set of 𝑛 

equations where 𝑛 is the number of nodes. The 𝑼 vector represents the 𝑛 primary variables and the 𝑅 

vector represents the nodal fluxes. Consequently, the only way a solution can be sought for this set of 

linear equations is to have no more than 𝑛 unknowns; consequently, a value of the primary variable or 

the nodal flux must be known (specified) at every node. The final step of the finite element procedure 

(Step 6) is specification of the physical constraints to the solution at all nodes (i.e., boundary conditions) 

to solve the global equations to obtain a spatial description of the primary variable.  

Consider, for example, a simple domain in which the primary unknown is specified uniquely at two 

nodes on the left side and two nodes on the right side of the domain (Figure 7). Solution of Equation 139 

subject to these boundary conditions produces the primary variable at all nodes at which the primary 

variable is unknown. Since the left and right-side nodes had a specified value of the dependent variable, 

the flow rate at these nodes is unknown; while, in the interior nodes the value of the dependent 

variable is unknown; however, to satisfy the conservation of mass, the net flow at these nodes is zero. 

Subsequent assembly of Equation 140 produces the flow rates at all nodes. The flow rates at the 

boundary nodes are non-zero because there is no adjacent element that apportions a flow rate with 

equal magnitude and opposite sign to cause cancellation.  
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Figure 7. A simple finite element domain with boundary conditions on the left and right sides. 

In summary, the finite element method is a procedure for solving a partial differential equation, which is 

a mathematical expression that governs the response of a physical system. Naturally, analysts seek to 

describe and analyze the behavior of these systems. The key aspects of the finite element method are: 

1. The partial differential equation describing the behavior of a physical system can be solved, 

using the finite element method, by discretizing the domain into finite elements. 

2. The process of discretization implies approximation; that is, the solution to the finite element 

equation provides the approximate spatial distribution of the primary variable at the nodes. 

3. The derivation of the finite element equations is based on a single element. The final equation 

embodies the material properties and element geometry. 

4. Using the principle of compatibility, these element equations are written recursively for every 

element in the domain and assembled into the global finite element equation. 

5. The global finite element equation is solved subject to boundary conditions.  

I.6 Constitutive Behaviour 

A constitutive model links a secondary quantity (e.g., flux) to the primary variable (e.g., temperature) or 

changes in the primary variable to changes in the stored mass or energy. As a result, constitutive models 

must represent two material behaviours: flow and storage. The storage component is only required for a 

transient analysis.  

Problems involving mass or energy transfer require a constitutive model that links a volume or energy 

flux to an energy gradient. By way of comparison, stress-strain problems require a constitutive law that 

links incremental stress changes to incremental strain quantities. Fourier’s Law, Fick’s law, and Darcy’s 

law are examples of flow laws that govern heat, solute, and water flow, respectively. The flow laws 

generally contain a property of the material through which flow is occurring – a coefficient – that 

ensures proportionality between the energy gradients and the resulting mass or energy flux. Hydraulic 

and thermal conductivity and the coefficient of diffusion are examples of such coefficients. These 

coefficients may be constants or functions of other parameters and may therefore be directly or 

indirectly functions of the primary variable. For instance, thermal conductivity may vary with the 

proportions of ice and liquid water within the pore-space and is consequently a function of the unfrozen 

water content, or indirectly a function of temperature.  
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Transient problems require a constitutive model that links time-dependent changes in the energy or 

mass stored in the system to the primary variable. In the case of heat transfer, there must be an 

increase in the amount of thermal energy stored in an element if the temperature of the element 

increases. Similarly, the volumetric water content function links the change in the mass of water to 

changes in pore-water pressure. There are several different material models in each product to 

accommodate different ways of parameterizing the flow and storage properties.  

I.6.1 Functional Relationships 

Many of the constitutive models in GeoStudio require a functional relationship between a material 

property and some other parameter. For example, water hydraulic conductivity can be defined as a 

function of matric suction and thermal conductivity can be made to vary with either temperature or 

volumetric water content. Functional relationships are defined by a data set that relates the property to 

a parameter. The software then represents the data by a computed functional relationship, 𝑓(𝑥) (e.g., 

polynomial spline, linear interpolation, step function), which is used by the solver.  

The data points defining the functional relationship can be from a measured dataset or generated by 

published empirical or semi-empirical methods. In some cases, the software provides an estimation 

routine. The estimation routines are documented in the product-specific sections.     

I.6.2 Add-ins 

User-defined functional relationships, such as those mentioned in Section I.6.1, can be generated by an 

Add-In. An Add-In is compiled computer code called by the solver. A material function add-in returns a 

specific property (e.g., thermal conductivity) at every gauss point within every element to which the 

material model is assigned to the solver. The add-in can comprise a functional relationship that is multi-

variable, of any mathematical form, and dependent on another variable from the analysis being solved 

or from another analysis. 

I.7 Boundary Conditions 

GeoStudio can be used to analyze a variety of field problems in order to define the state variable 

spatially within the domain. The state variable may be a vector or scalar, where a vector has both 

magnitude and direction (e.g., forces/stresses in SIGMA/W), while a scalar has only magnitude (e.g., 

total head in SEEP/W). 

In the analysis of field problems, the values of the state variables are generally given on the boundaries. 

An example would be the total head along the ground surface of a reservoir impoundment or the 

vertical stress beneath a rigid foundation. Accordingly, these problems are called boundary value 

problems, where the solution within the domain depends on the conditions along the boundary of the 

domain (Bathe, 2006). A change in only one boundary value affects the entire solution. 
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I.7.1 Types 

There are fundamentally three types of boundary conditions used in a finite element analysis: 

1. First-type; 

2. Second-type; and, 

3. Third-type. 

Consider the global finite element equation (Equation 140) that comprises the global assemblage of 

nodal unknowns (𝑈) and the global load vector (𝑅). A first-type boundary condition specifies the primary 

unknown at a node and is used to populate the 𝑈 vector. A second-type boundary condition is the 

spatial derivative of the primary variable normal to the boundary. In the case of scalar problems, this 

would be equivalent to applying a flux. Second-type boundary conditions are applied over an area and 

apportioned to nodes via numerical integration. These boundary values are used to populate the 𝑅 

vector. Finally, a third-type boundary condition specifies a nodal value directly in the global load vector. 

Table 21 summarizes the fundamental boundary conditions in each GeoStudio product, while the 

product-specific sections detail boundary conditions unique to each product.  

 Table 21. Boundary condition types for each GeoStudio application. 

Application First-type Second-type Third-type 

SEEP/W Pore-water Total Head Water Flux Water Rate 

TEMP/W Temperature Heat Flux Heat Rate 

AIR/W Pore-air Total Head Air Flux Air Rate 

CTRAN/W Concentration Mass Flux Mass Rate 

SIGMA/W Displacement Stress Force 

QUAKE/W Displacement Stress Force 

 

Boundary values can be defined as constants or functions. A constant boundary condition implies that 

the state of the boundary remains the same throughout the analysis. Functions are generally used in 

transient analyses to define the boundary-type as a function of time, but functions also have an 

important role in a SIGMA/W load-deformation or coupled analysis. Finally, it should be noted that even 

the most involved boundary conditions, such as the surface energy balance boundary in TEMP/W or the 

unit gradient boundary in SEEP/W, ultimately reduces to one of the three fundamental types. The 

surface energy balance boundary condition, for example, is a heat flux (second-type) boundary.    

I.7.2 Add-ins 

User-defined boundary conditions can be generated by an Add-In. A boundary condition add-in returns 

a specific value to the solver for every node (First or Third Type) or gauss point (Second Type) within 

every element to which the boundary condition is applied. The add-in can comprise a functional 
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relationship that is multi-variable, of any mathematical form, and may be dependent on another 

variable from the analysis being solved or from a different analysis.  

I.8 Impervious Barriers 

An impervious barrier prevents heat and/or mass transfer across a face in the domain, which is a point 

and a line in a 1D and 2D geometry, respectively. The barrier can be designated as impervious to water, 

heat, air, solute, and/or gas transfer depending on the physics being solved on the domain. An 

impervious barrier can be used, for example, to simulate a cut-off wall under a dam, an insulated (i.e. 

adiabatic) surface around a foundation, or an impervious diaphragm wall installed in an excavation.  

I.9 Convergence 

The global assemblage of finite element matrices contains material properties that could be a function 

of the solution. A commonly used numerical procedure for coping with material non-linearity involves 

repeatedly solving the finite element equations and updating the material properties based on the 

solution at the previous iteration. This repeated substitution continues until the maximum number of 

iterations is reached or a converged solution is obtained. Convergence occurs when successive solutions 

are equal within a specified tolerance. The GeoStudio products determine convergence based on two 

parameters: significant figures and maximum difference.  

I.9.1 Significant Figures 

The desired significant figure for comparison of the primary variable is specified in GeoStudio. The 

significant figures represent the digits that carry meaning as to the precision of the number. Leading and 

trailing zeros simply provide a reference as to the scale of the number. Consider the number 5123.789. 

This number could be written to a precision of two, three, or four significant figures as 5.1 x 103, 5.12 x 

103, and 5.124 x 103, respectively. For example, specifying two significant digits means that when the 

primary variable at a node from two successive iterations is the same to a precision of two significant 

figures, the node is deemed to be converged. 

I.9.2 Maximum Difference 

Computer computations inherently produce numerical noise; that is, digits that have no significance. It is 

necessary to filter out the insignificant digits when comparing floating point numbers. GeoStudio filters 

out the insignificance using a user-specified maximum tolerable difference. If the difference between 

two successive primary variables at a node is less than this maximum tolerable difference, the two 

values are deemed to be numerically equivalent and the solution reaches convergence without giving 

consideration to the significant figure criteria. For example, a node would be designated as converged if 

the maximum difference was specified as 0.001 and the difference in the primary variable(s) between 

successive iterations was less than this value.  
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Consider two numbers such as 1.23 x 10-6 and 1.23 x 10-7. These two numbers would not meet the 

significant figures criteria for convergence; however, the difference (1.11 x 10-6) is small and may have 

no physical meaning in the context of the analysis. The two numbers are consequently deemed to be 

equivalent within the tolerance of the maximum difference. 

I.9.3 Under-Relaxation 

Successive iterative solutions can diverge and/or oscillate if the material properties are highly non-linear 

and dependent on the primary variable. Under-relaxation procedures attempt to mitigate large 

variations in the material properties on successive iterations. For example, the hydraulic conductivity of 

water in unsaturated soil can vary by many orders of magnitude over a small pore-water pressure range. 

The inclusion of latent heat effects in an energy transfer analysis is another example of extreme material 

non-linearity. Divergence of the solution after two successive iterations can therefore be mitigated by 

limiting – that is, under-relaxing – the variation of the material properties used to calculate the finite 

element matrices. This in turn exerts a control on the difference between successive solutions and 

produces a less chaotic progression towards a converged solution. The under-relaxation parameters are 

specified in the Convergence settings of the analysis definition and include: 

1. Initial Rate (e.g., 1);  

2. Minimum Rate (e.g., 0.1); 

3. Rate Reduction Factor (e.g., 0.65); and, 

4. Reduction Frequency (e.g., 10 iterations). 

The Initial Rate essentially controls the allowable variation in material properties between successive 

iterations. A value of 1 corresponds to repeated substitution with no under-relaxation. The under-

relaxation rate is reduced by multiplication of the Rate Reduction Factor once the Reduction Frequency 

is exceeded. For example, the under-relaxation rate would be 0.65 after the 10th iteration, 0.652 after 

the 20th iteration and so on until the under-relaxation rate is less than or equal to the minimum rate.  

The default parameters may not be ideal for some numerically challenging problems. For example, it 

may be advantageous to immediately commence under-relaxation for a problem with highly non-linear 

material properties by specifying an Initial Rate less than 1 (e.g., 0.65). The Minimum Rate might also 

have to be reduced (e.g., 0.01) if the solution oscillates slightly around the final answer. Other variations 

on this strategy are possible, such as retaining the Initial Rate of 1 but reducing the Reduction Frequency 

(e.g. 5 iterations) and Minimum Rate (e.g., 0.01). Ultimately, some form of numerical experimentation is 

required and convergence must be judged by using the previously mentioned techniques. 

I.9.4 Verifying Convergence 

The general techniques for verifying convergence include: 

1. Examining the number of nodes that met the convergence criteria (Sections I.9.2 and I.9.3) on 

two successive iterations; 
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2. Comparing iteration counts on each time step or reviewing to the maximum allowable value; 

and,  

3. Examining the number of non-converged nodes with iteration.  

These techniques are covered in material available on the GEOSLOPE Website. Some products have 

additional techniques for verifying convergence.  
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Appendix II  Numerical Modelling Best Practice 
Burland (1987), in his seminal Nash Lecture, presented the idea that modelling is an integral part of 

geotechnical engineering practice (Figure 8). Geotechnical engineering involves defining the geological 

and hydrogeological system, understanding the constitutive behaviour of the material, and modelling. 

All three components are interlinked by experience. In the context of this discussion, the most 

prominent feature of this conceptualization is the fact that modelling is an integral part of the 

engineering process.  

 

Figure 8. Burland Triangle (Ground Engineering, 1996). 

Barbour and Krahn (2004) built upon the ideas of Burland (1996) and defined modelling as “the process 

by which we extract from a complex physical reality an appropriate mathematical reality on which we 

can base a design. The role of the numerical model is simply to assist us in developing the appropriate 

mathematical abstraction.”  Stated another way, a mathematical model is a simplified representation of 

a complex reality based on our understanding of the physical system.   

This definition of modelling endorses the idea that modelling is about process, not prediction. The 

greatest strength of modelling is to develop the appropriate mathematical abstraction of a complex 

physical system. In turn, engineers are able to develop a sound understanding of the physical system 

and exercise better engineering judgment. The maximum benefit can only be achieved if modelling is 

incorporated into the entire problem solving process (Figure 8).  
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A finite element analysis is just one type of numerical model that is less restrictive and complimentary to 

other types of numerical models, such as analytical and graphical solutions. The primary reason for 

invoking a finite element analysis is to cope with various complexities, including: a) intricate geological 

and hydrogeological settings; b) nontrivial physical processes; c) multiple and competing design 

alternatives and economic implications; and, d) a decision making process that can be made difficult by 

the need to communicate ideas to regulators and the general public.  

Barbour and Krahn (2004) elaborate on some of the intricacies of each of these complexities. It is 

perhaps worth highlighting that engineering problems involving the earth are particularly complicated 

because natural systems exhibit extreme spatial variability, complex and sometimes unquantifiable 

material behavior, incongruent temporal and spatial scales, and in many cases, physical processes that 

are not fully understood. Barbour and Krahn (2004) illustrate this realization with a poignant case history 

involving a comparison of various numerical simulations to measured deflections of a structurally 

supported retaining wall for a deep excavation. None of the predictions of the lateral deflections were 

accurate, or true to the measurements.  

The reasons for the inaccuracies were related in part to the aforementioned complexities and 

conceptualization errors, and in part to numerical problems. One can conclude that, in general, 

predicting the exact response of a physical system is not feasible because it is impossible to reproduce 

all of the detail present in the physical problem in even the most refined mathematical model. 

Prediction should therefore not be the primary objective of numerical modelling. The encouraging 

aspect of the case history was that the overall patterns of the physical behaviour were adequately 

simulated. As such, the numerical solutions provided an appropriate basis for design. 

This short discourse brings us back to the key advantage of numerical modelling: the process of 

numerical modelling enhances engineering judgement and provides a basis for understanding 

complicated physical processes. The process of modelling is iterative and comprises at least four 

essential components:   

1. Define the modelling objective and develop a conceptual model of the problem; 

2. Determine the appropriate theoretical models (i.e., physics) that describe the key physical 

processes; 

3. Develop a mathematical description of these processes and verify that it provides an accurate 

solution; and, 

4. Interpret the results in relation to the observed physical reality. 

Defining the modelling objective and developing a conceptual model are the most important steps in 

the modelling process. Again, this is where numerical modelling can be exceptionally useful, as the 

process forces the analyst to incorporate information on site geology and hydrogeology, laboratory 

information, and any other pertinent information (e.g., construction sequencing) into a conceptual 

model of the problem. The conceptual model must also be linked with the objectives of the modelling 

exercise.  
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Determining the appropriate theoretical model involves gaining an understanding of the underlying 

physics and the constitutive behavior governing material behavior. From the analysts’ perspective, this is 

tantamount to ensuring that the formulation of the numerical model is representative of the physical 

process being explored. This understanding is manifest in a model’s development through the definition 

of the boundary conditions and material properties. These components often change as the analyst 

iterates through the modelling process; refining the model as the understanding of the physical system 

evolves and additional field and laboratory data becomes available.  

Eventually, the conceptual and theoretical models are committed to a mathematical solution. In a finite 

element analysis, the geometry of the problem domain is drawn, material properties are defined, and 

boundary conditions are applied to the domain. A verification of the solution is completed to ensure 

convergence, appropriate spatial and temporal discretization, and correct application of physics 

(perhaps via comparison with an analytical solution). A simple to complex mantra must be adopted, so 

that the analyst can be confident in the numerical solution.  

Finally, the results are interpreted within the context of the physical reality. The most fundamental 

question that should always be asked is: are the results reasonable?  Stated another way, interpretation 

of the results should be done with a skeptical mind-set. The results of the finite element analysis could 

be compared with field monitoring data and should always be interpreted in light of the information 

used to develop the conceptual and theoretical models.  

A numerical model will likely evolve repeatedly over the course of the modelling process as the analyst 

is challenged by interpreting the results. Increasing complexity of the conceptual model may be 

required; however, speculating on high degrees of complexity in the absence of supporting observations 

is not just problematic, it makes the remaining parts of the process more difficult or impossible. The best 

numerical models include just enough complexity for the mathematical abstraction to reasonably 

approximate the physical reality.  

 


